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Abstract

Quantum
Mechanics

A bunch of positive
semidefinite things that
interact with other
positive semidefinite
things 1n some kind of
linear way




Abstract

Semidefinite
Programming
(Optimization)

Optimizing linear
functions ot positive
semidefinite things that
satisty some linear
conditions




Where do semidetinite programs appear?

Quantum... Cryptography
Complexity Theory
Query Complexity
Intormation Theory

Entanglement Theory
Graph Theory

Linear Optics
Bell Non-locality
Causal Structures
and many more...




Semidefinite
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problem
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SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints.




SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints. An SDP can be written in standard form as below:

a = maximize: (A, X)
subject to: ®(X) = B
X € Pos(X)




SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints. An SDP can be written in standard form as below:

X)

X € Po

a = maximize: g!
subject to: X) =
1»

A , Y are vector spaces

A € Herm(X)
B € Herm(¥/)

O is linear and maps

Herm(XZ') to Herm(Y)
(A, B, D) is the data



SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints. An SDP can be written in standard form as below:

cx==nwmkMze:@4I!l
subject to: CD =B
E Pos(X)

A , Y are vector spaces

A € Herm(X)
B € Herm(¥/)

O is linear and maps

Herm(XZ') to Herm(Y)

(A, B, D) is the data
X is the variable



SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints. An SDP can be written in standard form as below:

Objective

Q = maximize: <A9 X> function

subject to: ®(X) = B
X € Pos(X)




SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints. An SDP can be written in standard form as below:

a = maximize: (A, X)
subject to:|P(X) = B
X € Pos(X)

Constraints




SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints. An SDP can be written in standard form as below:

.. Optimal objective
@z maximize: (A, X) ° J

function value

subject to: ®(X) = B | (or. simply, the

value)

X E POS(%) This could be

finite, — 00, or +00




SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints. An SDP can be written in standard form as below:

a = maximize: (A, X)
subject to: ®(X) = B
X € Pos(X)

A =1{X € Pos(X) : D(X) = B} is called the feasible region.



SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints. An SDP can be written in standard form as below:

o f of = @, then the SDP
g = Mmaximize. <A, X> s infeasible. Otherwise,

SUbjeCt to: (I)(X) — B the SDP is feasible.
X € Pos(X)

A =1{X € Pos(X) : D(X) = B} is called the feasible region.



SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints. An SDP can be written in standard form as below:

a = maximize: (A, X)
subject to: ®(X) = B
X € Pos(X)

If &/ = @, then the SDP
IS infeasible. Otherwise,
the SDP is feasible.

X €  is called feasible.
Xe dNPAdX),itis
called strictly feasible.

A =1{X € Pos(X) : D(X) = B} is called the feasible region.



Geometry

A Feasible solution

Affine slice

b Feasible region

PSD matrices

Credit: cvxr.com



SDPs

A semidefinite program (SDP) is an optimization problem of a linear
function over a positive semidefinite variable subject to affine
constraints. An SDP can be written in standard form as below:

o f o = @, i.e., itis infeasible,
d = MmaXximize. <A,X> then a = — oo.
If of £ @, i.e.,itis feasible,

subjectto: ®(X) =B | tene>-w
If & = + o0 then it is said to

X E POS(SZ.) be unbounded.

f X € of satisfies (A, X) = a, then X is called an optimal solution.
(Note that even if a Is finite, an optimal solution may not exist!)




Examples

a = maximize: Tr(X) We have &f = {I,} (and thus feasible)
subjectto: X =1, a="2
X € Pos(C?) The optimal solution is X = 1.
a = maximize: Tr(X) We have of = @ (it is infeasible)
subject to: X = — I, = —00
X € Pos(C?) An optimal solution does not exist.

o = maximize: Tr(X) We have &f = {X € Pos(X) : X > I}
Subject to: X > 12 a =+ o0 (the SDP is Unbounded).
X € Pos(C?) An optimal solution does not exist.




Nomenclature

a = minimize: (A, X)
subject to: P(X) = B
X € Pos(X)

We can minimize as well.
The SDP is unbounded if &« = — o0 in this case.
Also, iIf the SDP is infeasible, then @ = + 0.

All the definitions generalize as you’d expect them too.



Weird behaviour

a = minimize: s (s,7) = (1,1) is feasible, thus ¢ < 1

1
S

subject to: [i e Pos(C?) The facts below imply that s > O, thus o > 0

(s,1) = (e,1/€), where € > 0, is feasible.
Since s can be made arbitrarily close to 0
we have a = 0.

But there does not exist an optimal solution!

Fact: If lbt* b € Pos(C?) and s = 0, then we must have b = 0 as well.
)
t b o 2
Fact: If [b* € Pos(C?), thens,t > 0and st > | D]
)

Fact: The converse of the above Is true.




Quantum example

a = maximize: (H, X) H is Hermitian.
. You can think of /1 as a Hamiltonian
subject to: Tr(X) = 1 | . .
and a as its maximum energy (if you
X € Pos() are familiar with such things).
We can also write this succinctly, below.
a = maximize: (H,X) This is an optimization
subjectto: X € D(Z) over quantum states!

Where D(X) := {X > 0 : Tr(X) = 1} are density operators



Quantum example

Given quantum states py, ..., p, € D(X), consider the SDP:

1 & This i L
o L S IS an optimization
a = maximize: — 0. M.
n lzzl i Mi) over POVMs.

subject to: Z M, =1
i=1
M. € Pos(X)




Quantum example

Given a linearmap ¥ € L(X', %) and its Choi representation
CeL(Y ), consider the SDP:

This computes the
maximum overlap a
linear map has with a

JE€Pos(Y/ ® &) | quantum channel.

maximize: (C, J)

subject to: Tro/(J) = I
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Semidefinite programming in two-party
quantum cryptography

Part Il : Semidefinite programming for two-party cryptography
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Outline of this talk

* |ntroduction to the two-party setup and security definitions
 Newer protocols for the two-party tasks

 Open questions



Introduction to two-party setup and
security definitions



A general two-party cryptography setup

P, = max Pr [Alice successfully cheats]
S

Py = max Pr [Bob successfully cheats]
S

Security of the protocol (&) := max{P,, Py}

4



Some useful cryptographic primitives

* Coin flipping (weak and strong) - Commitment schemes, etc.

* Oblivious transfer (1-out-of-2, Rabin) - Secure MPC, PIR, secure auctions/voting, etc.

* Bit commitment - Secure coin flipping, ZKP, etc.



The task of coin flipping

Heads is the
call.

| hope it’s a tail.
0’ | ‘

P, = max Pr [Dishonest Alice successfully forces outcome heads]
S

Py = max Pr [Dishonest Bob successfully forces outcome tails]
S

Security of the protocol (&) := max{P,, Py}

6



A bad colin flipping protocol

| will randomly
simply a single bit | will sample
a e {0,1}. be{0,1}.

Strategy: Dishonest Bob can simply send a @ 1
Security of the protocol (&) := max{P,, P} =1

14



Another bad coin flipping protocol (quantum)

(Prepare-and-measure)
| will prepare Let’s measure
) =100) + [11) our qubits.
| B O

0utput Oor1

S

-y .

Strategy: Dishonest Alice can simply prepare [00).



A decent coin flipping protocol [Nayak & Shor, 2003}

| will sample a and
prepare

|§a) = laa) +122)

| will
randomly sample

Verifies to
= continue or
abort.

a,

Output a @ b

 — | —

Strategy: ?

10



A security analysis using SDPs

Cheating Bob '. Cheating Alice
L <Mo e (\¢>[‘4’°’) + L mant. 'LL< Go, Gy Col D
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Mo:; M1 ; :/, T, (%) =Dy (6) =9,
KA ; I\J)'L(Go):l}l‘@) -

\ 60’6\,620-



Some results on weak coin flipping

« [Moc07] Given € > 0, there exists quantum protocol with maX{PX/CF : Pg/ Y <12+ ¢

* [ARV21] Explicit construction of protocols with arbitrarily small bias.
» [Mil20] Impossibility of efficient weak coin flipping.
 WHBT24] (In)composable security of weak coin flipping.

12



Newer protocols for the two-party tasks



Stochastic programming

(An classical example from stock investment)

Given a total K number of shares to be invested

between two different stocks (under certain constraints),
propose a useful investment strategy.

X : APPL
>
ag per share a(w) per share
A

K-x : GOOG | g, per share g(w) per share X

subject to:  s(x) € & (w)

[ c(@) 5] — ¢Is()

X 2 a(w)
S = [K — x] Co = [ go] clw) = [g(a))]



Rabin oblivious transfer

How to exchange secrets with oblivious transfer? (Rabin, 1981)

| start by randomly
sampling b € {0,1}

| finally measure
to obtain b or L

Rabin oblivious transfer is the cryptographic task where Alice sends a bit
b € {0,1} to Bob which he receives with probability 1/2 and with the probability

1/2 he receives 1 indicating that the bit was lost.



Rabin oblivious transfer

How to exchange secrets with oblivious transfer? (Rabin, 1981)

| start by randomly
sampling b € {0,1}

| finally measure
to obtain b or L

. oy
L I QQ iiiiii
VA /A

PfOT(@) = max Pr [Alice correctly guesses whether Bob asserts b or L]
S

P};OT(@) = max Pr [Bob correctly guesses b}
S



Rabin oblivious transfer

How to exchange secrets with oblivious transfer? (Rabin, 1981)

| start by randomly
sampling b € {0,1}

| finally measure
to obtain b or L

S(P) := max{ PN (P), PO (P)}

Motivation: Almost nothing is known about the security of Rabin oblivious transfer
task under the regime of unconditional security.




A bad Rabin-OT protocol

(Prepare-and-measure)
| will sample b € {0,1} and Let me
create [¢) = |b) + | L) measure the
qutrit.

Strategy: Dishonest Alice can simply send | L ).



Another bad Rabin-OT protocol

(Prepare-and-test) will sample
by € {0,1} and create i
[$o) = 1) + | L ). | acget;tst):o
abort.
B




Another bad Rabin-

(Prepare-and-test)

DT protocol

If Bob accepts, | will
| finally measure
to obtain b, or L.

sample b; € {0,1} and
create|¢p) = |b)) + | L ).

Strategy: Dishonest Alice can prepare | ¢,) to always accept and send | L ) next.



Some bad Rabin OT protocols

Prepare-and-measure (&) Prepare-and-test (,)

Alice can cheat perfectly in both &, and &,



A useful Rabin-OT protocol

(Using stochastic selection from bad protocols

| sample
by € {0,1}

b+ | L)e R

| randomly select

PelP, P}

Theorem [BS25]: There exists a quantum protocol for Rabin OT where Alice can correctly
guess whether Bob received the message or L with probability at most 0.9330 and Bob

can learn Alice’s bit with probability at most 0.9691 implying
max {PF", P37} = 0.9691 < 1




An optimization viewpoint

Optimal strategies for &, Optimal strategies for &,

Optimal strategies for &, Optimal strategies for &,

Fact: The security of the protocol with stochastic selection is strictly better than the
constituent protocols iff the optimal strategies do not overlap.




General stochastic selection setup

| prepare a state in Let me sample a
AdQ RB protocol & uniformly at
random

P, = max Pr [Alice cheats successfully] = max Z p; Pf(‘j)
S

Pp = max Pr [Bob cheats successfully] = max Z Pr[ /] Pz(gj)
S



Cheating Alice in stochastic selection (2/3)

Protocol 1 Protocol 2
max (C,, Y)) max (C,, Y,)
X,,Y, =0 X,,Y, =0




Cheating Alice in stochastic selection (3/3)

max E_[(C ,Y )]
oY )=8B, Vo
=Y)=X Vo
Y, =0, Vo
X = 0.

Note: For large | €2 |, use techniques based on Benders decomposition.



Some open questions

* Protocols with optimal communication complexity for WCF.

* Optimality of [CK09] and bounds on communication complexity for SCF.

» Secure device independent weak coin flipping protocol [BAHS24]

* Optimal protocols and lower bounds for 1-out-of-2-OT and Rabin OT [ABSW235].

 Composability of oblivious transfer (Ongoing work with Wu)
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