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Part I : Basics of semidefinite programming
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conditions
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and many more…

Where do semidefinite programs appear?
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SDPs
A semidefinite program (SDP) is an optimization problem of a linear 
function over a positive semidefinite variable subject to affine 
constraints.
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A semidefinite program (SDP) is an optimization problem of a linear 
function over a positive semidefinite variable subject to affine 
constraints. An SDP can be written in standard form as below:

SDPs

Optimal objective
function value
(or, simply, the 
value)
This could be 
finite, , or ⟨⟩ +⟩

α = maximize: ΦA, X∈
subject to: 𝒳(X) = B

X 𝒴 Pos(−)



A semidefinite program (SDP) is an optimization problem of a linear 
function over a positive semidefinite variable subject to affine 
constraints. An SDP can be written in standard form as below:

SDPs

 is called the feasible region.⟨ = {X ⟩ Pos(Φ) : ∈(X) = B}

α = maximize: 𝒳A, X𝒴
subject to: ∈(X) = B

X ⟩ Pos(Φ)



A semidefinite program (SDP) is an optimization problem of a linear 
function over a positive semidefinite variable subject to affine 
constraints. An SDP can be written in standard form as below:

 is called the feasible region.⟨ = {X ⟩ Pos(Φ) : ∈(X) = B}

α = maximize: 𝒳A, X𝒴
subject to: ∈(X) = B

X ⟩ Pos(Φ)

If , then the SDP 
is infeasible. Otherwise, 
the SDP is feasible. 

⟨ = −

SDPs



A semidefinite program (SDP) is an optimization problem of a linear 
function over a positive semidefinite variable subject to affine 
constraints. An SDP can be written in standard form as below:

 is called the feasible region.⟨ = {X ⟩ Pos(Φ) : ∈(X) = B}

α = maximize: 𝒳A, X𝒴
subject to: ∈(X) = B

X ⟩ Pos(Φ)
 is called feasible. 

, it is 
called strictly feasible.

X ⟩ ⟨
X ⟩ ⟨ − Pd(Φ)

SDPs

If , then the SDP 
is infeasible. Otherwise, 
the SDP is feasible. 

⟨ = ∞
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A semidefinite program (SDP) is an optimization problem of a linear 
function over a positive semidefinite variable subject to affine 
constraints. An SDP can be written in standard form as below:

α = maximize: ⟨A, X⟩
subject to: Φ(X) = B

X ∈ Pos(𝒳)

SDPs

If , i.e., it is infeasible, 
then .
If , i.e., it is feasible, 
then .
If  then it is said to 
be unbounded.

𝒴 = −
α = ∞ 𝒜

𝒴 ∅ −
α > ∞ 𝒜

α = + 𝒜

If  satisfies , then  is called an optimal solution.
(Note that even if  is finite, an optimal solution may not exist!)

X ∈ 𝒴 ⟨A, X⟩ = α X
α



We have 
 (the SDP is unbounded).

An optimal solution does not exist.

⟨ = {X ⟩ Pos(Φ) : X ∈ I}
α = + 𝒳

We have  (and thus feasible) 

The optimal solution is .

⟨ = {I2}
α = 2

X = I2

We have  (it is infeasible)

An optimal solution does not exist.

⟨ = 𝒴
α = − 𝒳

Examples
α = maximize: Tr(X)

subject to: X = I2
X ⟩ Pos(∞2)

α = maximize: Tr(X)
subject to: X = − I2

X ⟩ Pos(∞2)

α = maximize: Tr(X)
subject to: X ∈ I2

X ⟩ Pos(∞2)



Nomenclature

We can minimize as well.
The SDP is unbounded if  in this case.
Also, if the SDP is infeasible, then .

α = ⟨ ⟩
α = + ⟩

All the definitions generalize as you’d expect them too.

α = minimize: ΦA, X∈
subject to: 𝒳(X) = B

X 𝒴 Pos(−)



, where , is feasible.  
Since  can be made arbitrarily close to  
we have . 
But there does not exist an optimal solution!

(s, t) = (α,1/α) α > 0
s 0

λ = 0

 is feasible, thus (s, t) = (1,1) λ ⟨ 1
The facts below imply that , thus s > 0 λ ⟩ 0

Weird behaviour
λ = minimize: s

subject to: [ t 1
1 s] Φ Pos(∈2)

Fact: If , then  and [ t b
b* s] Φ Pos(∈2) s, t ⟩ 0 st ⟩ |b |2

Fact: If  and , then we must have  as well.[ t b
b* s] Φ Pos(∈2) s = 0 b = 0

Fact: The converse of the above is true.



We can also write this succinctly, below.

This is an optimization 
over quantum states!

Where  are density operatorsD(⟨) := {X ⟩ 0 : Tr(X) = 1}

 is Hermitian.
You can think of  as a Hamiltonian 
and  as its maximum energy (if you 
are familiar with such things).

H
H

α

Quantum example

α = maximize: ΦH, X∈
subject to: Tr(X) = 1

X 𝒳 Pos(⟨)

α = maximize: ΦH, X∈
subject to: X 𝒳 D(⟨)



Quantum example

Given quantum states , consider the SDP:α1, …, αn ⟨ D(⟩)

This is an optimization 
over POVMs.

λ = maximize:
1
n

n

∑
i=1

Φαi, Mi∈

subject to:
n

∑
i=1

Mi = I

Mi ⟨ Pos(⟩)



Given a linear map  and its Choi representation 
, consider the SDP:

⟨ ⟩ L(Φ, ∈)
C ⟩ L(∈ 𝒳 Φ)

This computes the 
maximum overlap a 
linear map has with a 
quantum channel.

Quantum example

maximize: 𝒴C, J−
subject to: Tr∈(J) = IΦ

J ⟩ Pos(∈ 𝒳 Φ)



References
• [Slides courtesy] Short course by Jamie Sikora at QIPSS School 2023


• Semidefinite programs in quantum information, 2011 (Ashwin Nayak)


• Advanced topics in quantum information theory (John Watrous) 

AbstractReferences
• These slides (and other SDP stuff) are available on my website. 
• Some books:



Presenter: Akshay Bansal

Semidefinite programming in two-party 
quantum cryptography
Part II : Semidefinite programming for two-party cryptography



Outline of this talk

• Introduction to the two-party setup and security definitions

• Newer protocols for the two-party tasks 

• Open questions



Introduction to two-party setup and 
security definitions 



A general two-party cryptography setup

m1

m2

⋮
mk

 [Alice successfully cheats]PA = max
S

Pr
 [Bob successfully cheats]PB = max

S
Pr

4

Security of the protocol  (𝒮) := max{PA, PB}



Some useful cryptographic primitives

• Coin flipping (weak and strong) - Commitment schemes, etc.

• Oblivious transfer (1-out-of-2, Rabin) - Secure MPC, PIR, secure auctions/voting, etc. 

• Bit commitment - Secure coin flipping, ZKP, etc. 

5



The task of coin flipping
Heads is the 

call. I hope it’s a tail.

m1

m2

⋮
Output 0 or 1

 [Dishonest Alice successfully forces outcome heads]PA = max
S

Pr

 [Dishonest Bob successfully forces outcome tails]PB = max
S

Pr

6

Security of the protocol  (𝒮) := max{PA, PB}



A bad coin flipping protocol
I will randomly 

simply a single bit 
a ∈ {0,1} .

I will sample 
b ∈ {0,1} .

a

Strategy: Dishonest Bob can simply send a ⊕ 1

Output a ⊕ b

b

Security of the protocol   = 1(𝒮) := max{PA, PB}
7



Another bad coin flipping protocol (quantum)
(Prepare-and-measure)

I will prepare
|ϕ⟩ = |00⟩ + |11⟩ Let’s measure 

our qubits.

ℬ

Strategy: Dishonest Alice can simply prepare .|00⟩

Output 0 or 1

8



A decent coin flipping protocol [Nayak & Shor, 2003]
I will sample  and 

prepare
a

|ϕa⟩ = |aa⟩ + |22⟩
I will 

randomly sample 
 b ∈ {0,1}

ℬ

Output a ⊕ b

b

Strategy: ?

a, 𝒜 Verifies to 
continue or 

abort.

10



A security analysis using SDPs
Cheating Bob Cheating Alice

11



Some results on weak coin flipping

• [Moc07] Given , there exists quantum protocol with .ϵ > 0 max{PWCF
A , PWCF

B } < 1/2 + ϵ

• [ARV21] Explicit construction of protocols with arbitrarily small bias. 

• [Mil20] Impossibility of efficient weak coin flipping.

• [WHBT24] (In)composable security of weak coin flipping.

12



Newer protocols for the two-party tasks



Stochastic programming
(An classical example from stock investment)

Given a total  number of shares to be invested 
between two different stocks (under certain constraints), 

propose a useful investment strategy.  

K

t = 0 t = T
 x : APPL

 K-x : GOOG

 per sharea0

 per shareg0

 per sharea(ω)

 per shareg(ω)



subject to:       

max
x

≥[c(ω)Ts(x)] ≤ cT
0 s(x)

s(x) ∈ 𝒮(ω)
s(x) = [ x

K ≤ x] c0 = [a0
g0] c(ω) = [a(ω)

g(ω)]



Rabin oblivious transfer
How to exchange secrets with oblivious transfer? (Rabin, 1981)

I start by randomly 
sampling b ∈ {0,1}

I finally measure 
to obtain  or b −

m1

m2

⋮
mk

Rabin oblivious transfer is the cryptographic task where Alice sends a bit 
 to Bob which he receives with probability  and with the probability 

 he receives  indicating that the bit was lost.
b ∈ {0,1} 1/2

1/2 −



Rabin oblivious transfer
How to exchange secrets with oblivious transfer? (Rabin, 1981)

I start by randomly 
sampling b ∈ {0,1}

I finally measure 
to obtain  or b −

m1

m2

⋮
mk

 [Bob correctly guesses ]PROT
B (𝔼) = max

S
Pr b

 [Alice correctly guesses whether Bob asserts  or ]PROT
A (𝔼) = max

S
Pr b −



Rabin oblivious transfer
How to exchange secrets with oblivious transfer? (Rabin, 1981)

I start by randomly 
sampling b ∈ {0,1}

I finally measure 
to obtain  or b −

m1

m2

⋮
mk

Motivation: Almost nothing is known about the security of Rabin oblivious transfer 
task under the regime of unconditional security.

𝒮(𝔼) := max{PROT
A (𝔼), PROT

B (𝔼)}



A bad Rabin-OT protocol
(Prepare-and-measure)

I will sample  and 
create 

b ∈ {0,1}
|ϕ⟩ = |b⟩ + | − ⟩ Let me 

measure the 
qutrit. 

ℬ

Strategy: Dishonest Alice can simply send .| − ⟩

Output  or b −



Another bad Rabin-OT protocol
(Prepare-and-test) I will sample 

 and create
.

b0 ∈ {0,1}
|ϕ0⟩ = |b0⟩ + | − ⟩ I will test to 

accept or 
abort.

ℬ0

b0



Another bad Rabin-OT protocol
(Prepare-and-test) If Bob accepts, I will 

sample  and 
create .

b1 ∈ {0,1}
|ϕ1⟩ = |b1⟩ + | − ⟩ I finally measure 

to obtain  or .b1 −

ℬ1

Strategy: Dishonest Alice can prepare  to always accept and send  next.|ϕ0⟩ | − ⟩



Some bad Rabin OT protocols
Prepare-and-measure ( )𝔼1 Prepare-and-test ( )𝔼2

|b⟩ + | − ⟩ ∈ ℬ

m2

⋮
mk

|b⟩ + | − ⟩ ∈ ℬ

m⊥ 2

⋮
m⊥ k

Alice can cheat perfectly in both  and .𝔼1 𝔼2

I sample b ∈ {0,1} I sample b ∈ {0,1}

PA(𝔼1) = 1 PA(𝔼2) = 1



A useful Rabin-OT protocol
(Using stochastic selection from bad protocols)

I sample 
b0 ∈ {0,1}

I randomly select 
 or 𝔼1 𝔼2

|b⟩ + | − ⟩ ∈ ℬ

𝔼 ∈ {𝔼1, 𝔼2}

Theorem [BS25]: There exists a quantum protocol for Rabin OT where Alice can correctly 
guess whether Bob received the message or  with probability at most  and Bob 

can learn Alice’s bit with probability at most  implying  
− 0.9330

0.9691
max{PROT

A , PROT
B } = 0.9691 < 1



An optimization viewpoint

Optimal strategies for 𝔼2Optimal strategies for 𝔼1

Optimal strategies for 𝔼2Optimal strategies for 𝔼1

Fact: The security of the protocol with stochastic selection is strictly better than the 
constituent protocols iff the optimal strategies do not overlap.



General stochastic selection setup
I prepare a state in 

𝒜 𝒫 ℬ
Let me sample a 

protocol  uniformly at 
random
𝔼

ℬ

 [Alice cheats successfully] = PA = max
S

Pr max ∑ pj P( j)
A

Output

⋮

𝔼

 [Bob cheats successfully] =  PB = max
S

Pr max ∑ Pr[ j] P( j)
B



Cheating Alice in stochastic selection (2/3)

max ′C1, Y1⟩
⊗(Y1) = B1
⟨(Y1) = X1
X1, Y1 Φ 0

max ′C2, Y2⟩
⊗(Y2) = B2
⟨(Y2) = X2
X2, Y2 Φ 0

Protocol 1 Protocol 2

X1 = X2



Cheating Alice in stochastic selection (3/3)

max ≥ω[′Cω, Yω⟩]
⊗(Yω) = Bω, Ξω
⟨(Yω) = X, Ξω

Yω Φ 0, Ξω
X Φ 0.

Note: For large , use techniques based on Benders decomposition.|≽ |



Some open questions

• Protocols with optimal communication complexity for WCF.

• Optimality of [CK09] and bounds on communication complexity for SCF.

• Secure device independent weak coin flipping protocol [BAHS24]

• Optimal protocols and lower bounds for 1-out-of-2-OT and Rabin OT [ABSW25].

• Composability of oblivious transfer (Ongoing work with Wu)
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