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Cryptography
The Art of Secret Keeping

Cryptography guarantees_that breaking a cryptosystem is at least
as hard as solving some| difficulf mathematical problem.
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The Cryptographic Adversary

e Adversary in cryptography normally modeled by a classical
computer.

* Typical guarantee is that unless the adversary can solve hard
problem, attack takes more than age of universe (in CPU
cycles)

* Robust to type of computer (mobile/laptop/supercomputer)

* What if the attacker is quantum?




Quantum Computers

 Computers that use laws of quantum rather than classical
physics: allow exponential speedups in some cases

* Most current cryptography relies on hardness of factoring,
discrete log: broken if guantum computers are realized
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What went wrong?

* Cryptography: tightrope between structure and
hardness

* Need structure for functionality, hardness for security

* RSA, DLOG: structure periodic, but carefully chosen to
avoid classical efficiency, despite periodicity

* Fall prey to the “one superpower” of quantum!
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Quantum Magic

* Main |Idea: Cast as period finding problem
* Goal: Find p in polylog p given oracle O,

-2p —p integer axis p 2p

* Easy classically if O,: x 2 x mod p
 What if cosets have random names?

O, : x =2 Colour (x mod p)

Slide Credit: Zvika Brakerski



Quantum Magic

* Main Idea: Cast as period finding problem
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Or does it?
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Post Quantum Cryptography?

 Base hardness on mathematical problems for which
guantum computers offer no advantage

* Most promising: problems in high dimensional lattices.




Cryptography from Lattices

: quantum computers do not seem to
break lattice based constructions (so far)

* Quantum algorithms do not effectively use geometry of problem

* Need way to solve non-commutative version of HSP

. : breaking cryptosystem implies ability to
solve hard problems in the worst case

* Efficient operations,

 Enables




Other Post Quantum Options

* Codes: hardness of decoding general linear codes

* Multivariate Polynomials: hardness of solving system of
nonlinear multivariate polynomial equations

" « Hash based: hardness of solving cryptographic hash
functions

* |[sogenies: based on algebraic maps between elliptic
curves
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NIST PQC Overview

NIST ran competition to create PQC standards

Post-Quantum Cryptography rqc

f v

Selected Algorithms 2022

Official comments on the Selected Algorithms should be submitted using the "Submit Comment" link for the appropriate algorithm.
Comments from the pgc-forum Google group subscribers will also be forwarded to the pgc-forum Google group list. We will
periodically post and update the comments received to the appropriate algorithm.

All relevant comments will be posted in their entirety and should not include Pll information in the body of the email message.

Please refrain from using OFFICIAL COMMENT to ask administrative questions, which should be sent to pgc-comments@nist.gov

History of Selected Algorithms Updates

Selected Algorithms: Public-key Encryption and Key-establishment Algorithms

Algorithm Algorithm Information Submitters Comments
CRYSTALS-KYBER Zip File (TMB) Peter Schwabe Submit Comment
. IP Statements Roberto Avanzi View Comments

PQC License Summary_

; Joppe Bos
& Excerpts Website
= Leo Ducas

Eike Kiltz

Tancrede Lepoint

Vadim Lyubashevsky

John M. Schanck

Gregor Seiler

Damien Stehle

Jintai Ding 12



Selected Algorithms: Digital Signature Algorithms

Algorithm Algorithm Information Submitters Comments
CRYSTALS-DILITHIUM Zip File (11MB) Vadim Lyubashevsky Submit Comment
|P Statements Leo Ducas View Comments
. Eike Kiltz
Website .
Tancrede Lepoint
Peter Schwabe

Gregor Seiler
Damien Stehle
Shi Bai
FALCON Zip File (4MB) Thomas Prest Submit Comment
|P Statements Pierre-Alain Fouque View Comments
. Jeffrey Hoffstein
Website .
Paul Kirchner
Vadim Lyubashevsky
Thomas Pornin
Thomas Ricosset
Gregor Seiler
William Whyte
Zhenfei Zhang

SPHINCS+ Zip File (230MB) Andreas Hulsing Submit Comment
IP Statements Daniel J. Bernstein View Comments
Christoph Dobraunig
Maria Eichlseder
Scott Fluhrer
Stefan-Lukas Gazdag

Website

Panos Kampanakis
Stefan Kolbl

Tanja Lange

Martin M Lauridsen
Florian Mendel

Ruben Niederhagen
Christian Rechberger
Joost Rijneveld

Peter Schwabe
Jean-Philippe Aumasson
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Bumpy road

Breaking Rainbow Takes a Weekend on a Laptop

Ward Beullens

IBM Research, Zurich, Switzerland
wbe@zurich.ibm.com

Abstract. This work introduces new key recovery attacks against the
Rainbow signature scheme, which is one of the three finalist signature
schemes still in the NIST Post-Quantum Cryptography standardization
project. The new attacks outperform previously known attacks for all the
parameter sets submitted to NIST and make a key-recovery practical for
the SL 1 parameters. Concretely, given a Rainbow public key for the
SL 1 parameters of the second-round submission, our attack returns the
corresponding secret key after on average 53 hours (one weekend) of
computation time on a standard laptop.
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Many ups and downs

AN EFFICIENT KEY RECOVERY ATTACK ON SIDH
(PRELIMINARY VERSION)

WOUTER CASTRYCK AND THOMAS DECRU

imec-COSIC, KU Leuven

ABSTRACT. We present an efficient key recovery attack on the Supersingular
Isogeny Diffie-Hellman protocol (SIDH), based on a “glue-and-split” theorem
due to Kani. Our attack exploits the existence of a small non-scalar endomor-
phism on the starting curve, and it also relies on the auxiliary torsion point
information that Alice and Bob share during the protocol. Our Magma im-
plementation breaks the instantiation SIKEp434, which aims at security level 1
of the Post-Quantum Cryptography standardization process currently ran by
NIST, in about one hour on a single core. This is a preliminary version of a
longer article in preparation.
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Still unclear which to use?

48 Emmanuel Macron @
‘ " @EmmanuelMacron
I~ Officiel du gouvernement - Francg

Ce tweet peut sembler
technique, il 'est ! Et c’est
tout I’'intérét. Cent ans

apres le premier télégramme
diplomatique entre
I’ambassade de France aux
Etats-Unis et Paris, la France

= Ambassadeur Numérique... @
@AmbNum

this first post-quantum
diplomatic telegram

was secured using
Crystals-Dilithium
post-quantum cryptography
algorithms, selected as a

future electronic signature 12x larger than Kyber

a transmis son premier
télégramme diplomatique
en cryptographie
post-quantique !

Tweeter votre réponse

[l O

standard by the NIST and
Frodo-Kem recommended
by @ANSSI_FR for sensitive
data management.

Traduire le Tweet

14:10 - O1 déc. 22 - Twitter for iPhone

6 Retweets 5 Tweets cités 13 J'aime

Tweeter votre réponse

to avoid algebraic lattices?

But then... why Dilithium?

Bottomline: cannot ignore the math!

Slide Credit: Damien Stehle
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Encrypted Computation
Personalised Medicine

“The dream for tomorrow’s
medicine is to understand the
links between DNA and disease
— and to tailor therapies
accordingly. But scientists have a
problem: how to keep genetic
data and medical records secure

while still enabling the massive, g R, Atiny W T Seeiod 5 peas g

I need a DNA sample to make sure it’s still you.”

cloud-based analyses needed to
make meaningful associations.”

Check Hayden, E. (2015). Nature, 519, 400-401.

[ Can Cryptography solve this? J
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Step 1. Give your public
key to sender.

Step 2: Sender uses your public
key to encrypt the plaintext,

plaintext ciphertext
encryption

Step 3: Sender gives
the ciphertext to you.

Step 4: Use your private key (and
passphrase) to decrypt the ciphertext.

ciphertext plaintext
decryption




PKE does not suffice!

* Secret keys correspond to users
* Encrypt for each user?

* All or nothing access

 Genomic data (for instance) is too sensitive
to share

* May be willing to participate in study which
reveals output (result of study) without
revealing input (personal data)

20



More Expressive Encryption

Functional Encryption!

Secret Keys Ciphertexts
for functions F for inputs x

CH
oL
AH
BH
FH
AH
CH
BH
oL &

F={[C D)+41.B) - {[A.C)+B1.D}

Decryption recovers F(x)

F : Age distribution of people with lung cancer
X : particular user’s disease profile




Encryption with Partial Decryption Keys

Encrypt (x): Decrypt ( sk, ct ):

y = F(x)

Keygen(F):
Security:

Adversary possessing keys for multiple

circuits F; cannot distinguish Enc(xy) from

Enc(x;) unless Fi(xg) £ Fi(xq)

Functional Encryption [swos,ssw11]
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Personalized Medicine?

Encrypt
input = genomic data of users

Keygen
input: some medical research algo

Decrypt ( skg ct):

y = F(x)

Security: No one’s personal genomic data
is leaked!

Functional Encryption [swos,ssw11]
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Fully Homomorphic Encryption

[GO9, BV11, BGV12, GSW13...]

ENCRyPY | Client’s

Encrypted
Data

Cloud
Evaluation

QOutput of
Computatlon DECRYPT computation
of Cﬁent's on encrypted
data

-

_ N , N , )
Expressive Compact ciphertext, Encryption and
Functionality: independent of function evaluation
Supports arbitrary circuit size commute!
circuits Enc(f(x)) =* f(Enc(x))
RN 2N
*: roughly
, | ‘- \']w /, :\ m...ﬂ ‘,h s
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Cryptography from Lattices

* Redo old cryptography:

* build post-quantum versions of existing functionalities

e Build new functionalities
* not realizable before

25




In Crypto-land, its always party-time!
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What is a lattice?
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Lattices and Bases

A lattice is the set of all integer linear combinations of (linearly
independent) basis vectors B = {by,...,b,} CR":

n
L= b;-Z={Bx:x€Z"}
i=1 °
The same lattice has many bases e

n «

EZZC;-Z ? : R

=1 ° ®




Minimum Distance and Successive Minima

@ Minimum distance

A1 = min X — o
= min k-l : .
— min_|x| 2L
xE L, X0 /7\
A1 p

T\

[ ]
- Ll L) - .
@ Successive minima (i =1,...,n) °
(]

Ai = min{r : dim span(B(r) N L) > i} .




Minimum Distance and Successive Minima

@ Minimum distance

A= i - e 7
1 ymin [x =y R
— min_|x| :
x€L x40 Ve
@ Successive minima (i =1,...,n) ’ \J .
Ai = min{r : dim span(B(r)N L) > i} . o °

@ Examples
o Zm: >\1:)\2:---:>\n:1
e Always: A\ < < ... <\,




Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with x € Z¥) of
length (at most) ||Bx|| < Aq




Approximate Shortest Vector Problem

Definition (Shortest Vector Problem, SVP.,)

Given a lattice £(B), find a (nonzero) lattice vector Bx (with x € ZK) of
length (at most) ||Bx|| < A1




Closest Vector Problem

Definition (Closest Vector Problem, CVP)

Given a lattice £(B) and a target point t, find a lattice vector Bx within
distance ||[Bx — t|| < u from the target




Approximate Closest Vector Problem

Definition (Closest Vector Problem, CVP,)

Given a lattice £(B) and a target point t, find a lattice vector Bx within
distance ||Bx — t|| < ~u from the target

N EEE T S



Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

Given a lattice £(B), find n linearly independent lattice vectors
Bxi,...,Bx, of length (at most) max; || Bx;|| < A,




Approximate Shortest Independent
Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP. )

Given a lattice £(B), find n linearly independent lattice vectors
Bxi, ..., Bx, of length (at most) max; ||Bx;|| < v,




Random Lattices in Cryptography

e Cryptography typically uses (random) lattices A
such that

o A C Z9 is an integer lattice
o gZ9 C A is periodic modulo a small integer g.

@ Cryptographic functions based on g-ary lattices
involve only arithmetic modulo g.




Random Lattices in Cryptography

e Cryptography typically uses (random) lattices A
such that

o A C Z9 is an integer lattice
o gZ9 C A is periodic modulo a small integer g.

@ Cryptographic functions based on g-ary lattices
involve only arithmetic modulo g.

0 Definition (g-ary lattice)

N is a g-ary lattice if gZ" C N C Z"




Random Lattices in Cryptography

e Cryptography typically uses (random) lattices A
such that

o A C Z9 is an integer lattice
o gZ9 C A is periodic modulo a small integer g.

@ Cryptographic functions based on g-ary lattices
involve only arithmetic modulo q.

0 Definition (g-ary lattice)
N is a g-ary lattice if gZ" C N C Z"

Examples (for any A € Z7*9)
@ N\g(A) ={x|xmod g € ATZZ} WA
° /\qL(A):{x|Ax:0mod q} C 2°







One Way Functions

f:D - R, One Way




Ajtai’'s One Way Function

m

(C—_— )

@ Parameters: m,n,q € Z
o Key: A e Zg*"
o Input: x € {0,1}™

@ Output: fa(x) = Ax mod q

Theorem (A'96)

For m > nlgq, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fa(x) = Ax mod q is a one-way function.




Regev’s One Way Function

o AcZIM™¥ scli, ecE™ P
® ga(s ) =As mod ¢




Regev’s One Way Function

o AcZy*F seZiectm P
® ga(s;e) = As+emod g T
@ Learning with Errors: Given A y
and ga(s,e), recover s. M

Theorem (R'05)

The function ga(s,e) is hard to M A +|el—=>|b

invert on the average, assuming
SIVP is hard to approximate in the .

worst-case.




Short Integer Solution Problem

let A€ ngm, q = poly(n),m = Q(nlog q)

Given matrix A, find “short” (low norm) vector x such that

Ax =0 mod q € Zg

f

\

n mod q




Learning With Errors Problem

Distinguish “noisy inner products” from uniform

Fix uniform s eZq”

b b
al,b1=<a1,s>+e1 al?bl
b b
a,, b,=<a,,s>+e, a’y , b’
| VS :
I |
| ;
b b
a,, b, =<a,,s>+e, an, b,

3 uniforme 2., e,~ de7,




Recap:Lattice Based One Way Functions

Public Key A € Zg*™, q = poly(n), m = Q(nlogq)

Based on SIS Based on LWE

fa(x) = Axmod q € Zj ga(s,e) = s'A +e'modq € Lq
® \ery short e, injective
® OWEF if LWE is hard [Reg05...]

® Short x, surjective
® CRHF if SIS is hard

| TAR
- ! . ! \I./’ ]
N ! V ;
| [ o A é
\ /
2

Image Credit: MP12 slides
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Public Key Encryption (regevos)

¢ Recall A (e) = umod g hard to invert

+ Secret: e, Public: A, u { A }[e] = {U} mod g

49



Public Key Encryption (regevos)

» Recall A (e) = u mod g hard to invert
+ Secret: e, Public: A, u { A }[e] = {u} mod g
% Encrypt (A, u) :

» Pick random vector s

» Co=A!s + noise

» C;=U'S+noise + msg

50



Public Key Encryption (regevos)

» Recall A (e) = u mod g hard to invert

4 moog

« Secret: e, Public: A, u { A }[e]
% Encrypt (A, u) :

» Pick random vector s

» Co=A!s + noise

» C;=U'S+noise + msg

Small only
if eis small

% Decrypt (e) :

» el Cg—C, = msg + noise 51



Public Key Encryption (regevos)

¢ Recall A (e) = u mod g hard to invert, easy with trapdoor

% Secret: e, Public: A, u { A }e = {U} mod ¢

+ By SIS problem, hard to find short e

+ By LWE problem, ciphertext appears random
+ Cy=Als + noise, looks like random
% Cy=U's+noise + msg, looks like random + msg

+ Hence hides message “msg”

52



For Signatures, need

Lattice Trapdoors




Trapdoor Functions

Generate (f,T)

f:D - R, One Way




Inverting functions for Crypto

® Given u = f,(x) = Ax modq
® Sample

X o= fi' ()

with prob o« exp(—Il x’ I?/0?)

Latter distribution neeg

(
( lattice trapdoors!

nodq
® |

Preimage Sampleable Trapdoor Functions!

Generate (x, y) in two equivalent ways

OR

Same Distribution (Discrete Gaussian, Uniform) ! -



Lattice Trapdoors: Geometric View




Parallelopipeds




Parallelopipeds




What’s my
closest lattice
point?

Good Basis




Declared
closest point

Good Basis

o o o
T o
o o .V o o o
O
o o o \ o o o
o o o o o o




Bad Basis




Declared
closest point

Bad Basis

Closer Lattice
point

Output center of parallelopipid containing T

Not So Accurate...




Basis quality and Hardness

SVP, CVP, SIS (...) hard given arbitrary
(bad) basis

Some hard lattice problems are easy
given a good basis

Will exploit this asymmetry

Use Short Basis as Cryptographic Trapdoor!




Lattice Trapdoors

Recall u = fj(x) = Axmodg
Want o Ph s -,1.35-.?3:{-'» N

X = fil(w) t

with prob o exp(=Il x' II*/5?)

A ={x:Ax = 0mod q} € Zg'

Short basis for A lets us sample from £ ' (u)
with correct distribution!

64



Digital Signatures

| private key

Everybody knows Alice’s
Only Alice knows the corresponding private key

Goal: Alice sends a “digitally sighed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed




Digital Signatures from Lattices

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.




Digital Signatures from Lattices

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

> Sign(T, u): use T to sample a short z € Z™ s.t. Az = H(u) € Zy.

Draw z from a distribution that reveals nothing about secret key:

+
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+
A
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A + H o+ o+
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Digital Signatures from Lattices

» Generate uniform vk = A with secret ‘trapdoor’ sk = T.

> Sign(T, u): use T to sample a short z € Z™ s.t. Az = H(u) € Zy.

Draw z from a distribution that reveals nothing about secret key:

+
4+
+
*t oy
-{-’#-+++

+
+

+
+ "+ + *

> Verify(A, i, z): check that Az = H(u) and z is sufficiently short.

» Security: forging a signature for a new message p* requires finding
short z* s.t. Az* = H(u*). This is SIS: hard!

FYNEEE. W S M. fNUY e e

‘ ¢ ! i&"‘_ \;‘

<

' §

e \
A\

Wz

Vo o

i

4

1



We sa‘w some foun\datto

Y | s

\ .’ \
j . P y( D ) § 'c’ 3

Also prom:sed«opportuﬁzt




Lots and lots of questions

- Multilinear (even bilinear) maps from lattices?
- Non-Interactive Key Exchange?

- Efficient Threshold Signatures?

- Witness Encryption?




Bilinear Maps

Let G,, G,, G; be groups of prime order and g; denote the generator of G;

e. G]_X(GJZ - (GJT

e(9f,9%) = e(g1,92)*

-

Hardness Assumption (roughly): Adversary can only
compute pairings, take linear combinations and test if
output is zero

~

[ Lattice version? ]

71




Non-Interactive Key Exchange

& ¥
ki

(pky,sk,) < KeyGen (pky, sk;) <« KeyGen
(pks, sk3) < KeyGen \4 u (pky, sk,) < KeyGen

[ * Derive a shared key Klzs}




Post Quantum Threshold Signatures

Signing Verification




Post Quantum Threshold Signatures

Signing Verification

Transaction

Signed with sk,

Signed with sk




Post Quantum Threshold Signatures

Signing Verification

Transaction Transaction
Signed with sk, ‘ .',Signed with skl\:
Signed with sk | Signed with s kg,'

Final signature




Post Quantum Threshold Signatures

Signing Verification

Transaction Transaction
Signed with sk, ‘ -',Signed with skl\:
Signed with sk | Signed with s k§}

Final signature

{

Verify with vk




Post Quantum Threshold Signatures

Correctness — Signature generated
from contribution of a valid set of
participants should verify.

Security - Any invalid set of
participants should not be able to
generate a valid signature




Post Quantum Threshold Signatures

m

—» Sk, i —> 0'1\A
[ KeyGen ]‘—’ Si‘i—>[ PartSign ]—>0i—’ Combine ]
Need a new assumption!
Beautiful question for both theory and practice!

m ————»
’[ Verify ]

accept/rejec

{ Feasibility result exists [BGG+18], improved in J l

[ASY22], still impractical




Witness Encryption

[ Encrypt against NP statement, Decrypt with witness! J

* Encrypt (x, m) =2 ct
* Decrypt (ct, w) = m iff w is witness for statement x

{ Currently no construction from good assumption! ]




summary

* Post Quantum Crypto: Intro
* Basics of Lattices

* Hard Problems on Lattices
* Public Key Encryption

* Digital Signatures

* Taste of open questions

[ Thank You

J Images Credit: Hans Hoffman

Slides Credit: Daniele
Micciancio, Chris Peikert
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