The background of the slide is an abstract painting featuring a variety of colors including red, blue, yellow, green, and purple. The brushstrokes are visible and overlapping, creating a textured and dynamic appearance.

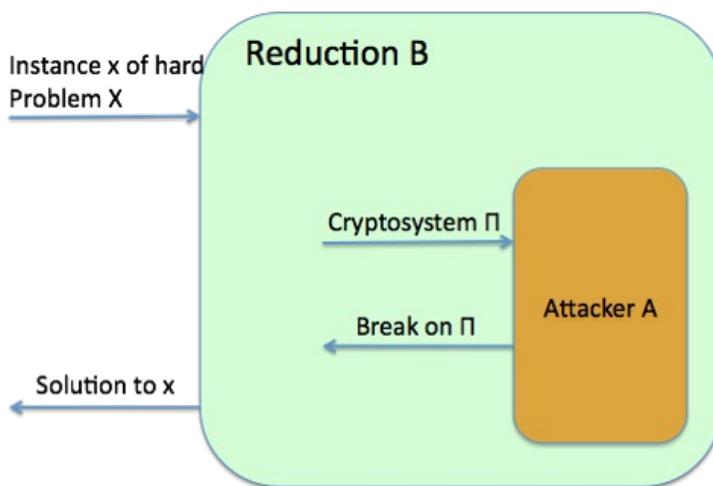
Post Quantum Cryptography: Foundations, Opportunities & Beyond

Shweta Agrawal
IIT Madras

Cryptography

The Art of Secret Keeping

Cryptography guarantees that breaking a cryptosystem is at least as hard as solving some **difficult** mathematical problem.



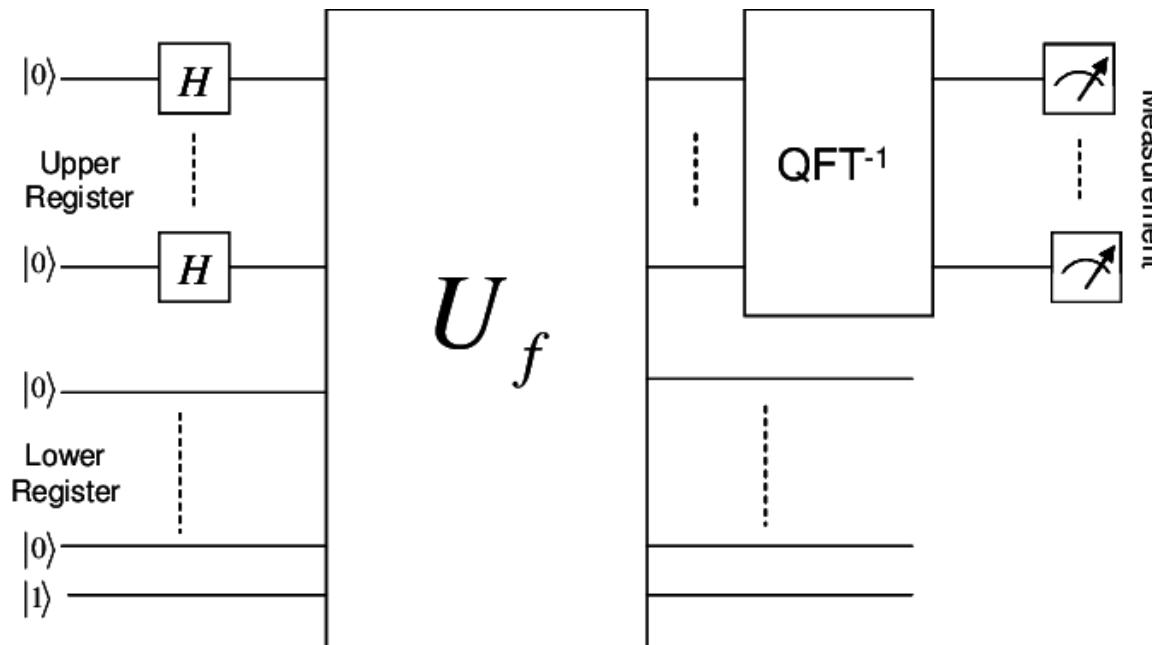
Difficult for who?

The Cryptographic Adversary

- Adversary in cryptography normally modeled by a **classical computer**.
- Typical guarantee is that unless the adversary can solve hard problem, attack takes **more than age of universe** (in CPU cycles)
- Robust to type of computer (mobile/laptop/supercomputer)
- What if the attacker is **quantum**?

Quantum Computers

- Computers that use laws of quantum rather than classical physics: allow exponential speedups in some cases
- Most current cryptography relies on hardness of factoring, discrete log: **broken** if quantum computers are realized

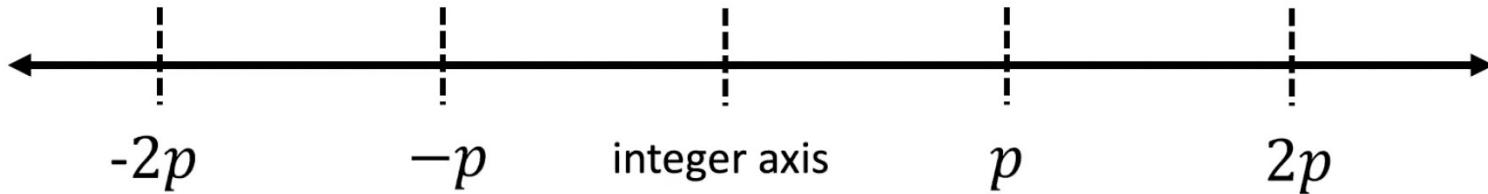


What went wrong?

- Cryptography: **tightrope** between structure and hardness
- Need structure for **functionality**, hardness for **security**
- RSA, DLOG: structure periodic, but carefully chosen to **avoid classical efficiency, despite periodicity**
- Fall prey to the “one superpower” of quantum!

Quantum Magic

- **Main Idea:** Cast as period finding problem
- **Goal:** Find p in $\text{polylog } p$ given oracle O_p

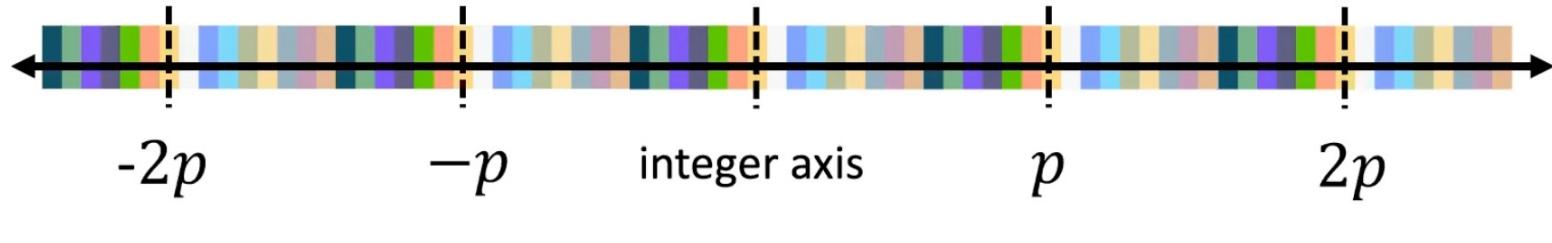
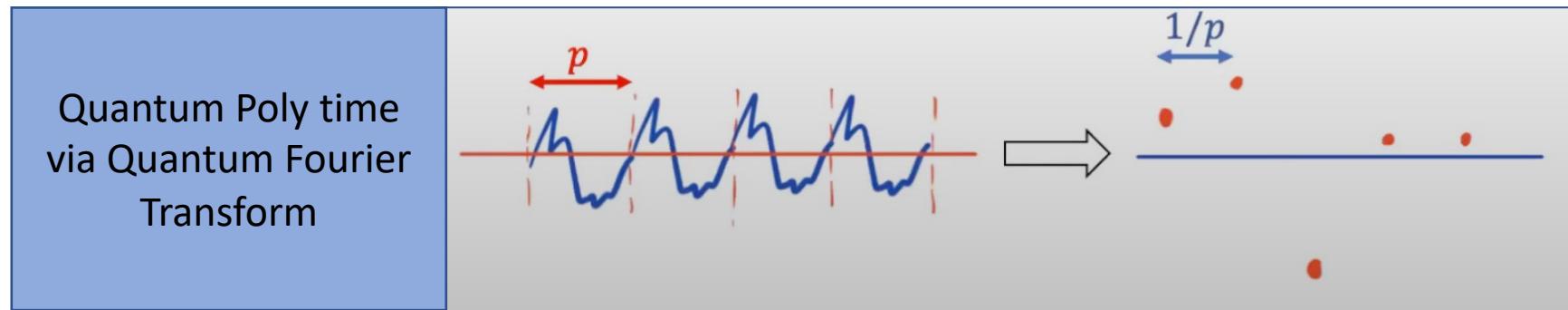


- Easy classically if $O_p : x \rightarrow x \bmod p$
- What if cosets have random names?

$O_p : x \rightarrow \text{Colour}(x \bmod p)$

Quantum Magic

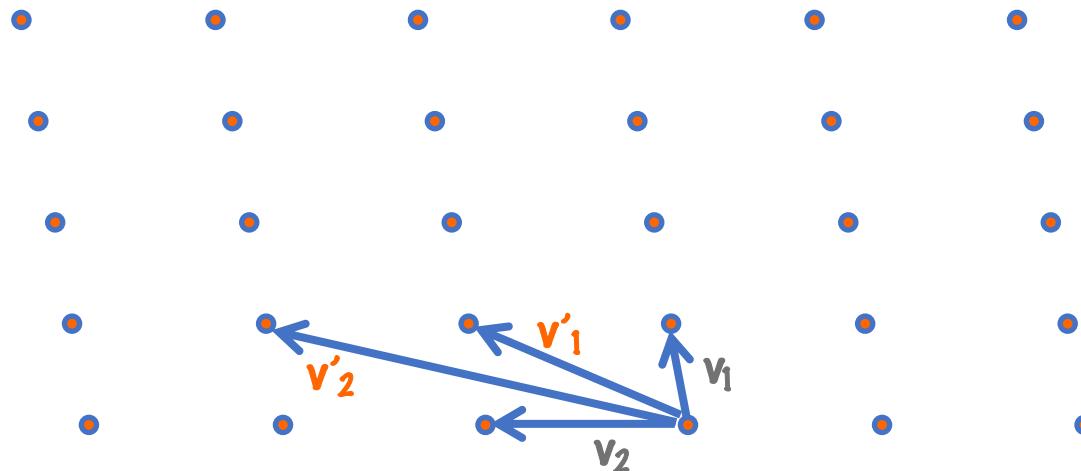
- **Main Idea:** Cast as period finding problem
- **Goal:** Find p in $\text{polylog } p$ given oracle O_p



Or does it?

Post Quantum Cryptography?

- Base hardness on mathematical problems for which quantum computers offer no advantage
- Most promising: problems in **high dimensional lattices**.



Cryptography from Lattices

- **Post quantum secure**: quantum computers do not seem to break lattice based constructions (so far)
 - Quantum algorithms do not effectively use geometry of problem
 - Need way to solve non-commutative version of HSP
- **Strong security**: breaking cryptosystem implies ability to solve hard problems in the worst case
- Efficient operations, **parallelizable**
- Enables **cryptography for big data**

Other Post Quantum Options

- **Codes**: hardness of decoding general linear codes
- **Multivariate Polynomials**: hardness of solving system of nonlinear multivariate polynomial equations
- **Hash based**: hardness of solving cryptographic hash functions
- **Isogenies**: based on algebraic maps between elliptic curves

NIST PQC Overview

NIST ran competition to create PQC standards

Post-Quantum Cryptography PQC

Selected Algorithms 2022

Official comments on the Selected Algorithms should be submitted using the "Submit Comment" link for the appropriate algorithm. Comments from the [pqc-forum Google group subscribers](#) will also be forwarded to the pqc-forum Google group list. We will periodically post and update the comments received to the appropriate algorithm.

All relevant comments will be posted in their entirety and should not include PII information in the body of the email message.

Please refrain from using OFFICIAL COMMENT to ask administrative questions, which should be sent to pqc-comments@nist.gov

[History of Selected Algorithms Updates](#)

Selected Algorithms: Public-key Encryption and Key-establishment Algorithms

Algorithm	Algorithm Information	Submitters	Comments
CRYSTALS-KYBER	Zip File (7MB) IP Statements	Peter Schwabe Roberto Avanzi Joppe Bos Leo Ducas Eike Kiltz Tancrede Lepoint Vadim Lyubashevsky John M. Schanck Gregor Seiler Damien Stehle Jintai Ding	Submit Comment View Comments
PQC License Summary & Excerpts	Website		

Selected Algorithms: Digital Signature Algorithms

Algorithm	Algorithm Information	Submitters	Comments
CRYSTALS-DILITHIUM	Zip File (11MB) IP Statements Website	Vadim Lyubashevsky Leo Ducas Eike Kiltz Tancrede Lepoint Peter Schwabe Gregor Seiler Damien Stehle Shi Bai	Submit Comment View Comments
FALCON	Zip File (4MB) IP Statements Website	Thomas Prest Pierre-Alain Fouque Jeffrey Hoffstein Paul Kirchner Vadim Lyubashevsky Thomas Pornin Thomas Ricosset Gregor Seiler William Whyte Zhenfei Zhang	Submit Comment View Comments
SPHINCS+	Zip File (230MB) IP Statements Website	Andreas Hulsing Daniel J. Bernstein Christoph Dobraunig Maria Eichlseder Scott Fluhrer Stefan-Lukas Gazdag Panos Kampanakis Stefan Kolbl Tanja Lange Martin M Lauridsen Florian Mendel Ruben Niederhagen Christian Rechberger Joost Rijneveld Peter Schwabe Jean-Philippe Aumasson Bas Westerbaan Ward Beullens	Submit Comment View Comments

Bumpy road

Breaking Rainbow Takes a Weekend on a Laptop

Ward Beullens

IBM Research, Zurich, Switzerland
wbe@zurich.ibm.com

Abstract. This work introduces new key recovery attacks against the Rainbow signature scheme, which is one of the three finalist signature schemes still in the NIST Post-Quantum Cryptography standardization project. The new attacks outperform previously known attacks for all the parameter sets submitted to NIST and make a key-recovery practical for the SL 1 parameters. Concretely, given a Rainbow public key for the SL 1 parameters of the second-round submission, our attack returns the corresponding secret key after on average 53 hours (one weekend) of computation time on a standard laptop.

Many ups and downs

AN EFFICIENT KEY RECOVERY ATTACK ON SIDH (PRELIMINARY VERSION)

WOUTER CASTRYCK AND THOMAS DECRU

imec-COSIC, KU Leuven

ABSTRACT. We present an efficient key recovery attack on the Supersingular Isogeny Diffie–Hellman protocol (SIDH), based on a “glue-and-split” theorem due to Kani. Our attack exploits the existence of a small non-scalar endomorphism on the starting curve, and it also relies on the auxiliary torsion point information that Alice and Bob share during the protocol. Our Magma implementation breaks the instantiation **SIKEp434**, which aims at security level 1 of the Post-Quantum Cryptography standardization process currently ran by NIST, in about one hour on a single core. This is a preliminary version of a longer article in preparation.

Still unclear which to use?

Emmanuel Macron
@EmmanuelMacron
Officiel du gouvernement - France

Ce tweet peut sembler technique, il l'est ! Et c'est tout l'intérêt. Cent ans après le premier télégramme diplomatique entre l'ambassade de France aux États-Unis et Paris, la France a transmis son premier télégramme diplomatique en cryptographie post-quantique !

Tweeter votre réponse

III O <

Ambassadeur Numérique...
@AmbNum

this first post-quantum diplomatic telegram was secured using Crystals-Dilithium post-quantum cryptography algorithms, selected as a future electronic signature standard by the NIST and Frodo-Kem recommended by [@ANSSI_FR](#) for sensitive data management.

Traduire le Tweet
14:10 · 01 déc. 22 · Twitter for iPhone

6 Retweets 5 Tweets cités 13 J'aime

Tweeter votre réponse

III O <

Frodo-KEM?!?!?

12x larger than **Kyber**,
to avoid algebraic lattices?

But then... why **Dilithium**?

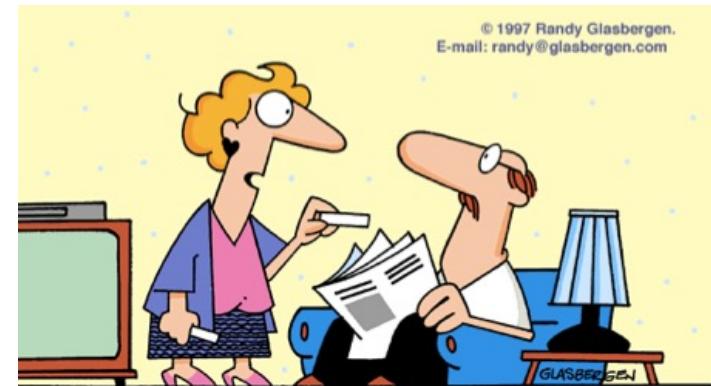
Bottomline: cannot ignore the math!

Exciting New Applications

Encrypted Computation Personalised Medicine

“The dream for tomorrow’s medicine is to understand the links between DNA and disease — and to tailor therapies accordingly. But scientists have a problem: how to keep genetic data and medical records secure while still enabling the **massive, cloud-based analyses** needed to make meaningful associations.”

Check Hayden, E. (2015). *Nature*, 519, 400-401.



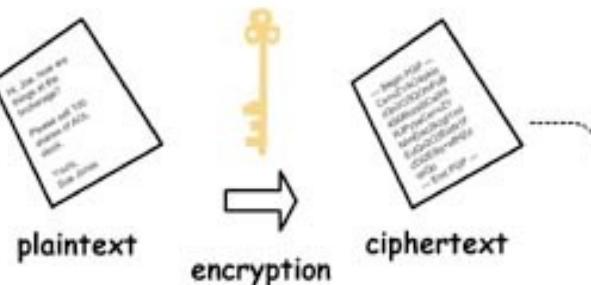
“You don’t look anything like the long haired, skinny kid I married 25 years ago. I need a DNA sample to make sure it’s still you.”

Can Cryptography solve this?

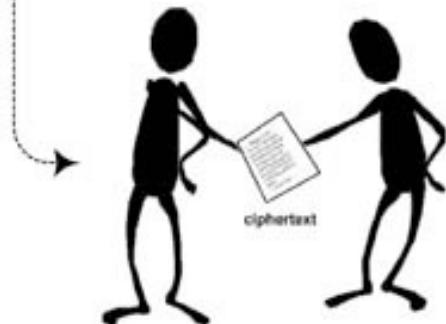
Public Key Encryption

Step 1: Give your public key to sender.

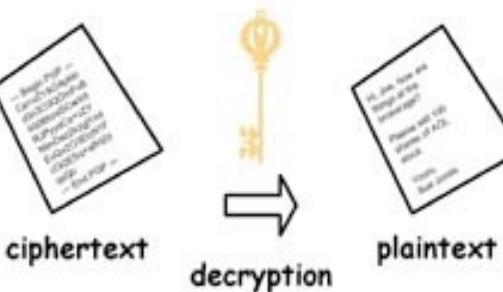
Step 2: Sender uses your public key to encrypt the plaintext.



Step 3: Sender gives the ciphertext to you.



Step 4: Use your private key (and passphrase) to decrypt the ciphertext.



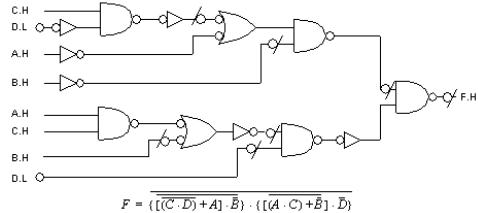
PKE does not suffice!

- Secret keys correspond to users
- Encrypt for each user?
- All or nothing access
 - Genomic data (for instance) is too sensitive to share
 - May be willing to participate in study which reveals output (result of study) without revealing input (personal data)

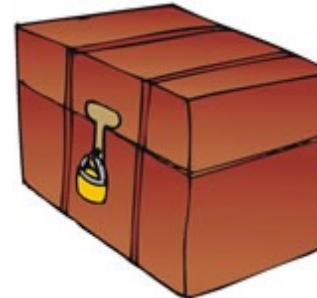
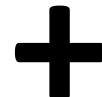
More Expressive Encryption

Functional Encryption!

Secret Keys
for functions F



Ciphertexts
for inputs x



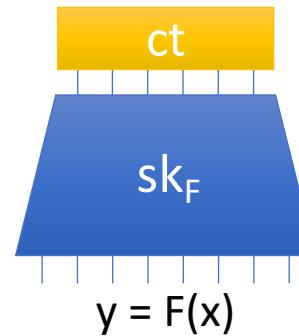
Decryption recovers $F(x)$

F : Age distribution of people with lung cancer
 X : particular user's disease profile

Encryption with Partial Decryption Keys

Encrypt (x):

Decrypt (sk_F , ct):



Keygen(F):

Security:

Adversary possessing keys for multiple circuits F_i cannot distinguish $Enc(x_0)$ from $Enc(x_1)$ unless $F_i(x_0) \neq F_i(x_1)$

Functional Encryption [SW05,BSW11]

Personalized Medicine?

Encrypt

input = genomic data of users

ct(Deepo)

ct(Supriyo)

ct(Kunal)

ct(Anuja)

Decrypt (sk_F , ct):

ct(Deepo)

ct(Supriyo)

ct(Kunal)

ct(Anuja)

sk_F

$y = F(x)$

Keygen

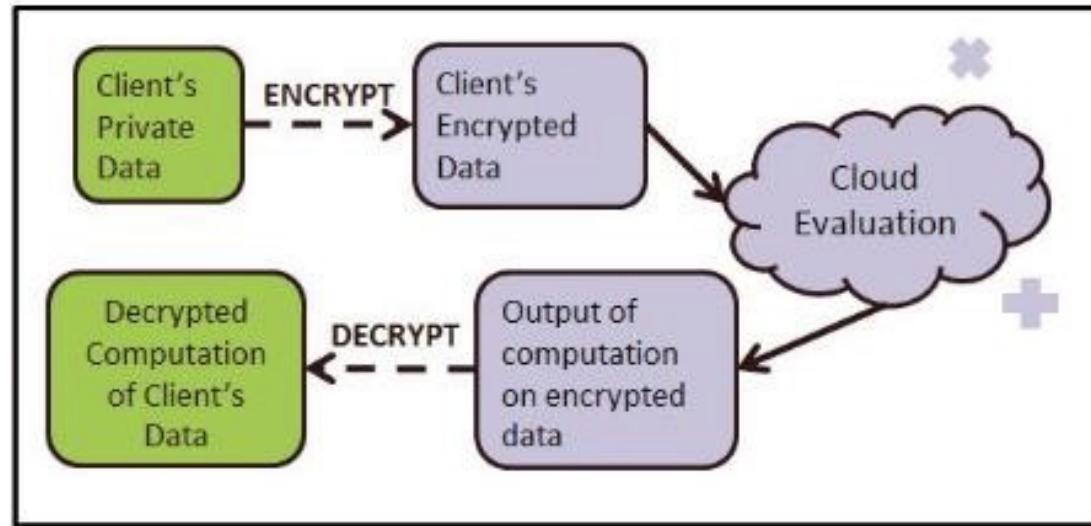
input: some medical research algo

Security: No one's personal genomic data is leaked!

Functional Encryption [SW05,BSW11]

Fully Homomorphic Encryption

[G09, BV11, BGV12, GSW13...]



Expressive
Functionality:
Supports arbitrary
circuits

Compact ciphertext,
independent of
circuit size

Encryption and
function evaluation
commute!
 $\text{Enc}(f(x)) =^* f(\text{Enc}(x))$

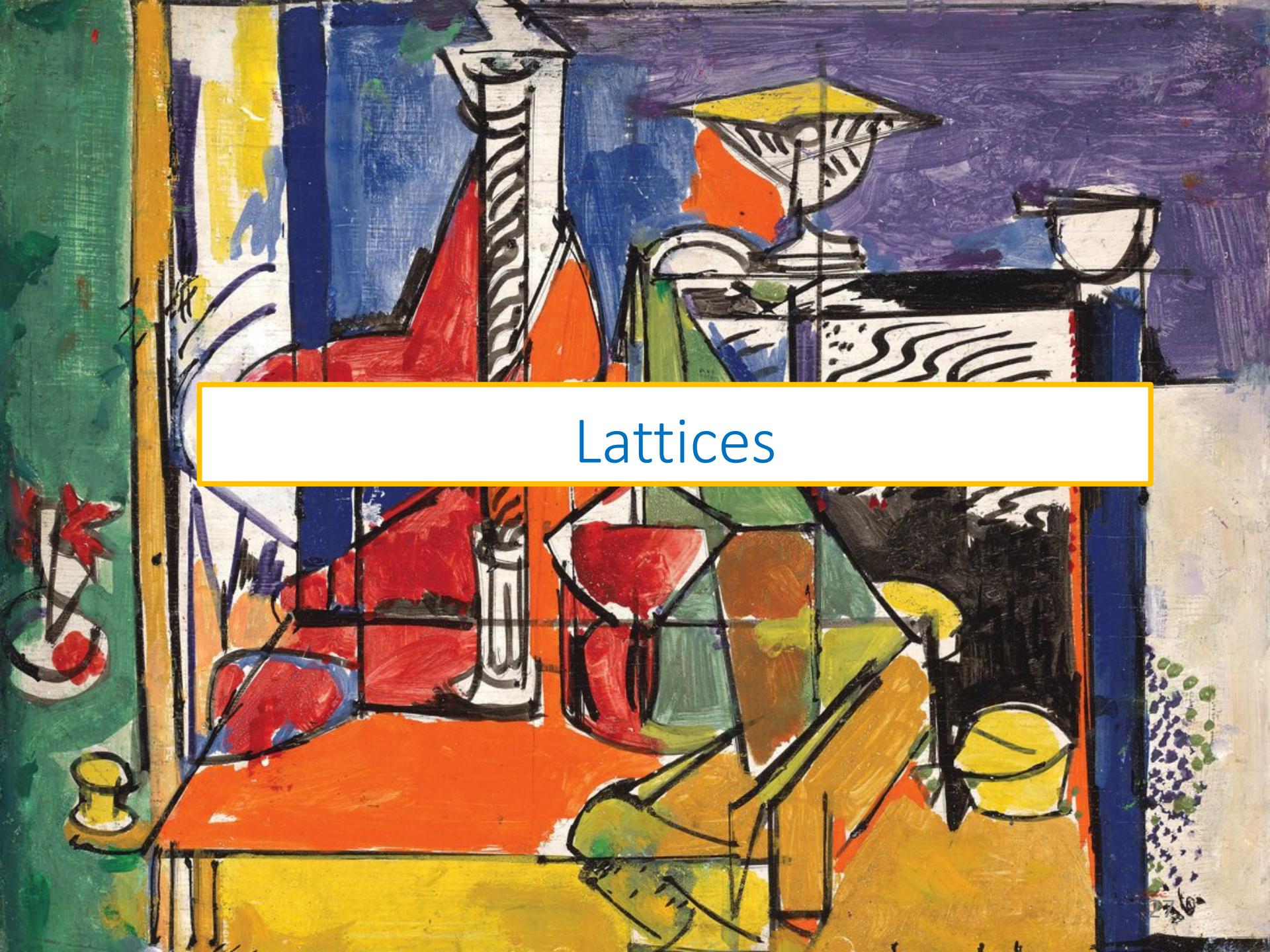
* : roughly

Cryptography from Lattices

- Redo old cryptography:
 - build **post-quantum versions of existing** functionalities
- Build new functionalities
 - **not realizable before**

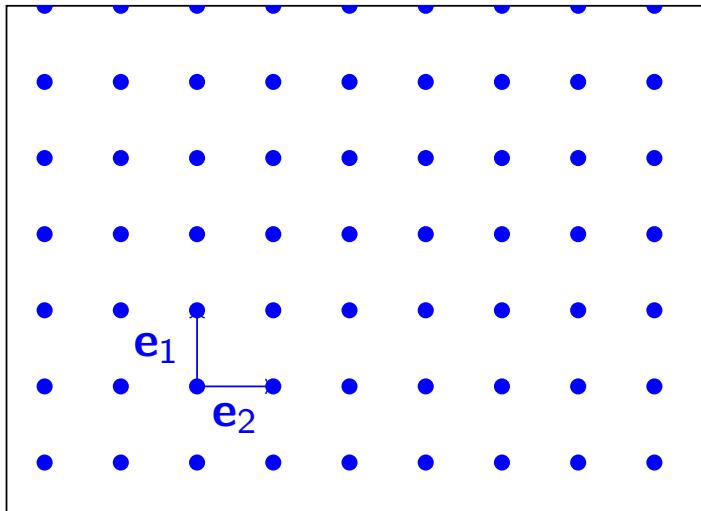
Caveat: currently at cost
of efficiency

In Crypto-land, its always party-time!



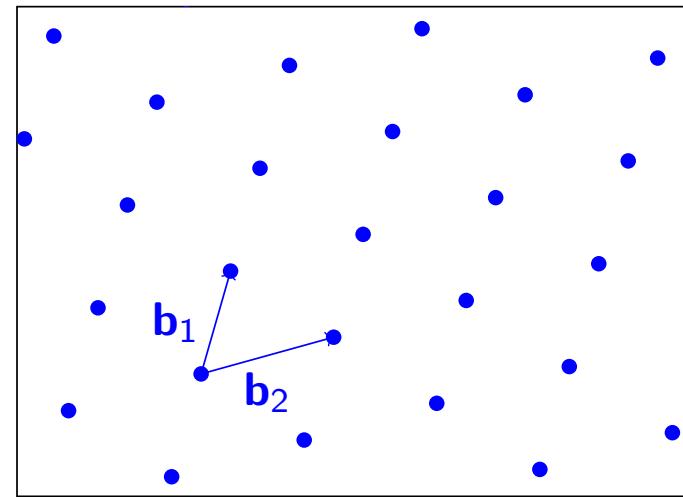
Lattices

What is a lattice?



The simplest lattice in n -dimensional space is the integer lattice

$$\Lambda = \mathbb{Z}^n$$



Other lattices are obtained by applying a linear transformation

$$\Lambda = \mathbf{B} \mathbb{Z}^n \quad (\mathbf{B} \in \mathbb{R}^{d \times n})$$

A set of points with periodic arrangement

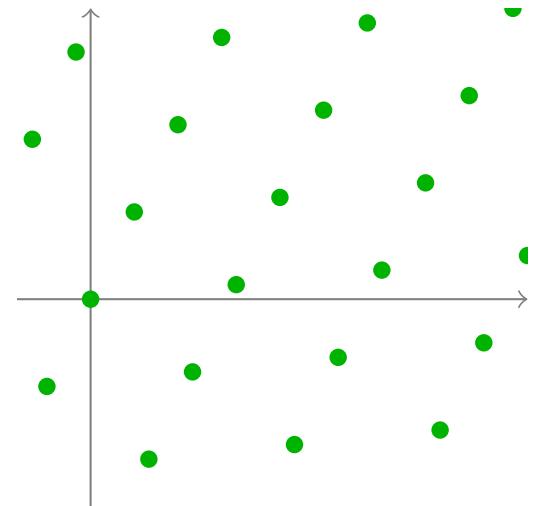
Lattices and Bases

A lattice is the set of all **integer** linear combinations of (linearly independent) **basis** vectors $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\} \subset \mathbb{R}^n$:

$$\mathcal{L} = \sum_{i=1}^n \mathbf{b}_i \cdot \mathbb{Z} = \{\mathbf{Bx} : \mathbf{x} \in \mathbb{Z}^n\}$$

The same lattice has many bases

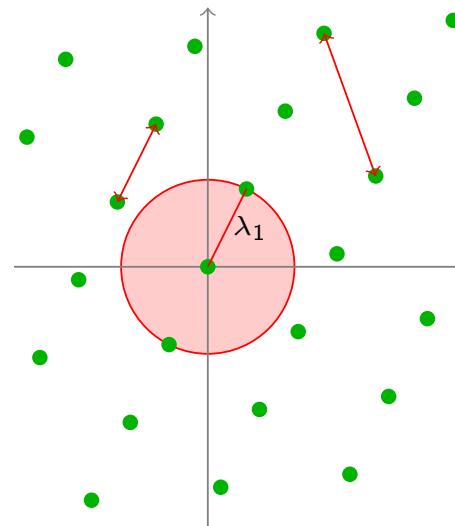
$$\mathcal{L} = \sum_{i=1}^n \mathbf{c}_i \cdot \mathbb{Z}$$



Minimum Distance and Successive Minima

- Minimum distance

$$\begin{aligned}\lambda_1 &= \min_{\mathbf{x}, \mathbf{y} \in \mathcal{L}, \mathbf{x} \neq \mathbf{y}} \|\mathbf{x} - \mathbf{y}\| \\ &= \min_{\mathbf{x} \in \mathcal{L}, \mathbf{x} \neq \mathbf{0}} \|\mathbf{x}\|\end{aligned}$$



- Successive minima ($i = 1, \dots, n$)

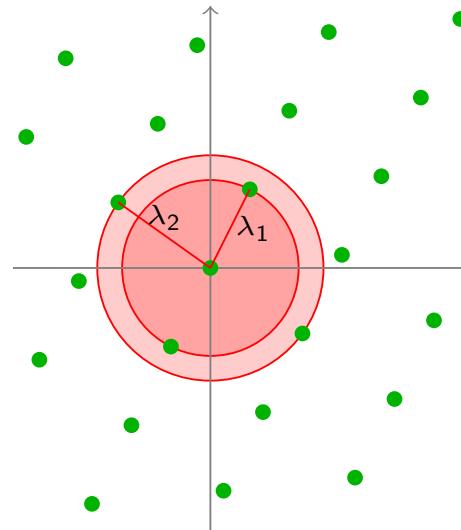
$$\lambda_i = \min\{r : \dim \text{span}(\mathcal{B}(r) \cap \mathcal{L}) \geq i\}$$

Minimum Distance and Successive Minima

- Minimum distance

$$\lambda_1 = \min_{\mathbf{x}, \mathbf{y} \in \mathcal{L}, \mathbf{x} \neq \mathbf{y}} \|\mathbf{x} - \mathbf{y}\|$$

$$= \min_{\mathbf{x} \in \mathcal{L}, \mathbf{x} \neq \mathbf{0}} \|\mathbf{x}\|$$



- Successive minima ($i = 1, \dots, n$)

$$\lambda_i = \min\{r : \dim \text{span}(\mathcal{B}(r) \cap \mathcal{L}) \geq i\}$$

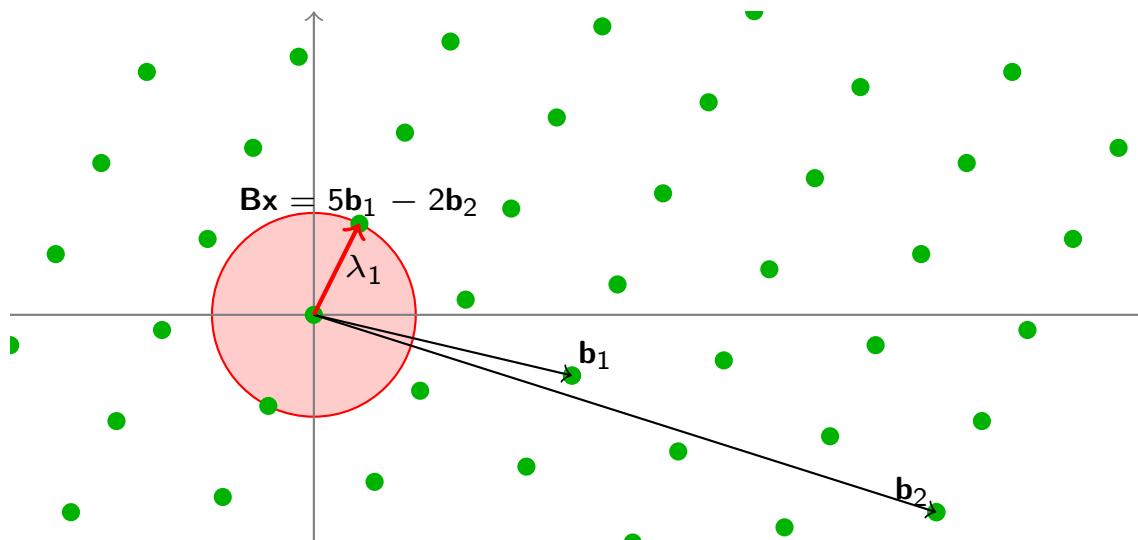
- Examples

- \mathbb{Z}^n : $\lambda_1 = \lambda_2 = \dots = \lambda_n = 1$
- Always: $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$

Shortest Vector Problem

Definition (Shortest Vector Problem, SVP)

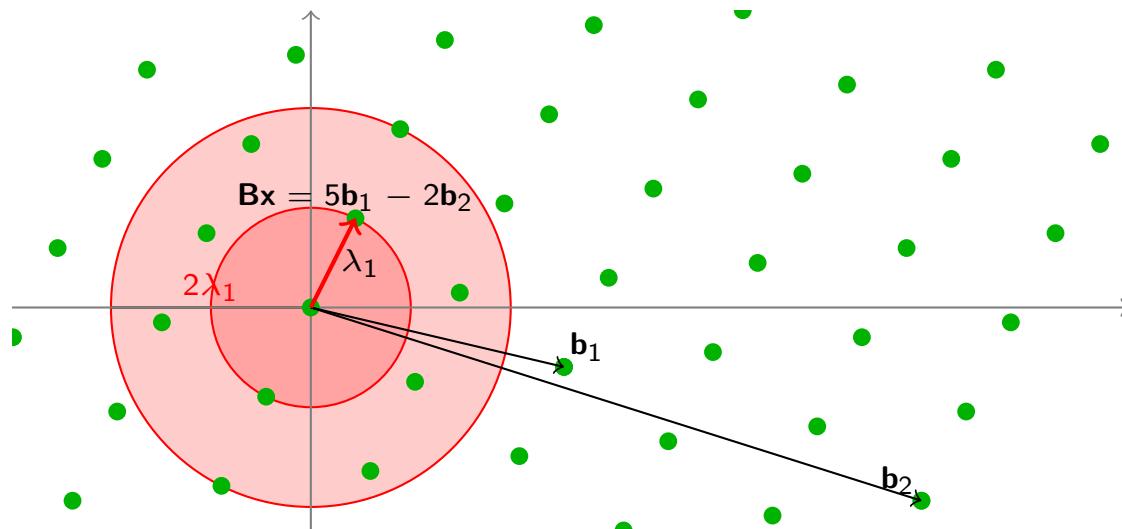
Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector \mathbf{Bx} (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{Bx}\| \leq \lambda_1$



Approximate Shortest Vector Problem

Definition (Shortest Vector Problem, SVP_γ)

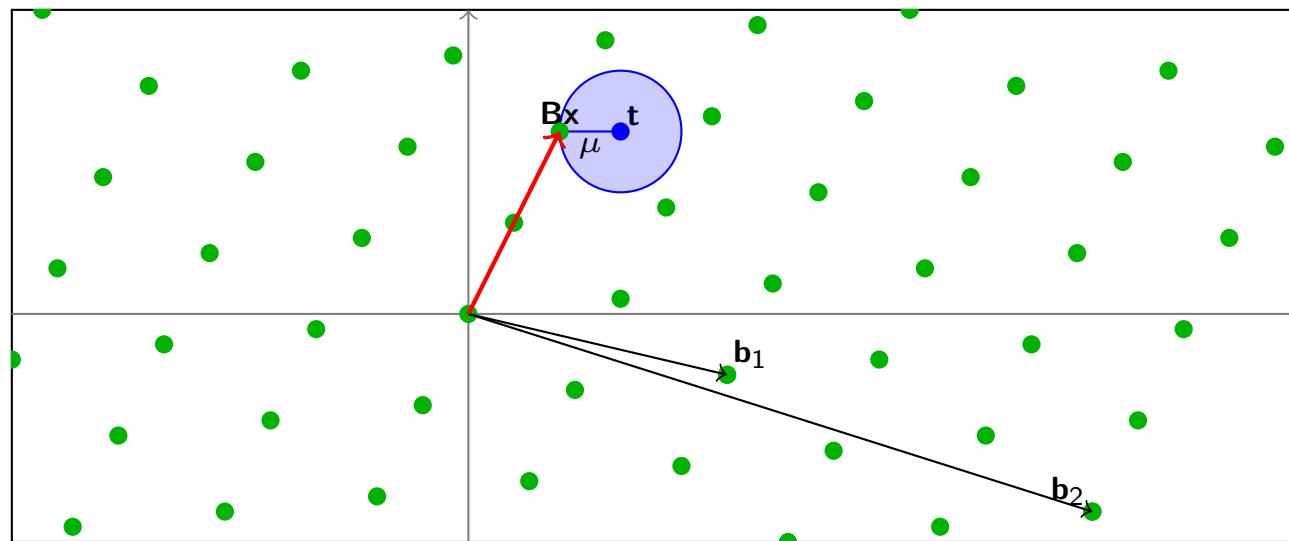
Given a lattice $\mathcal{L}(\mathbf{B})$, find a (nonzero) lattice vector \mathbf{Bx} (with $\mathbf{x} \in \mathbb{Z}^k$) of length (at most) $\|\mathbf{Bx}\| \leq \gamma \lambda_1$



Closest Vector Problem

Definition (Closest Vector Problem, CVP)

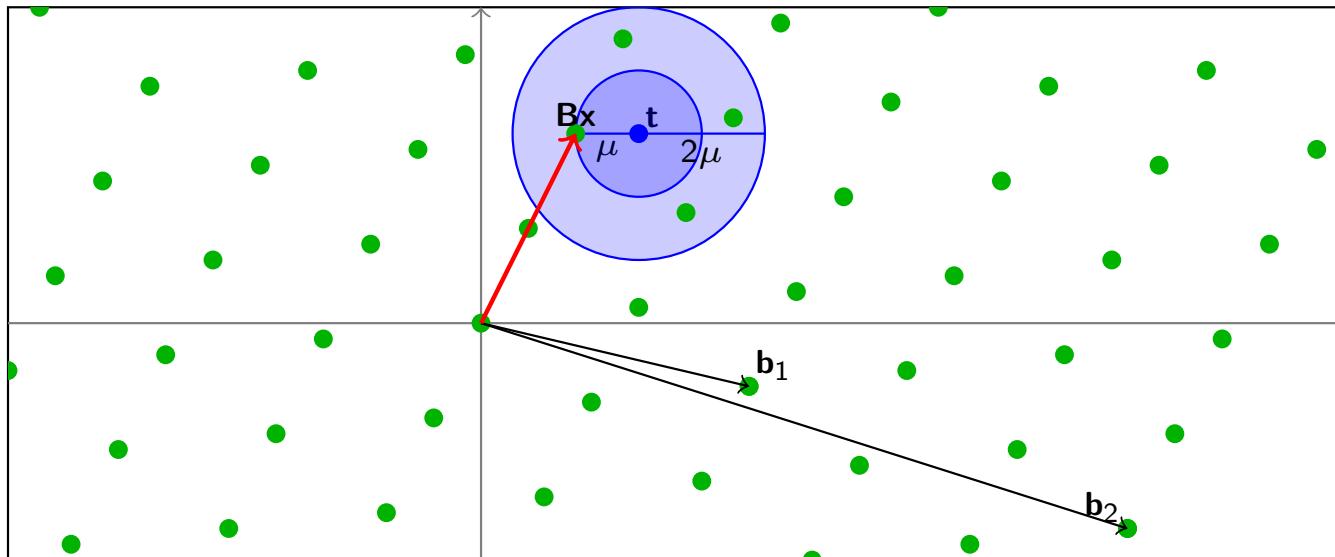
Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector \mathbf{Bx} within distance $\|\mathbf{Bx} - \mathbf{t}\| \leq \mu$ from the target



Approximate Closest Vector Problem

Definition (Closest Vector Problem, CVP_γ)

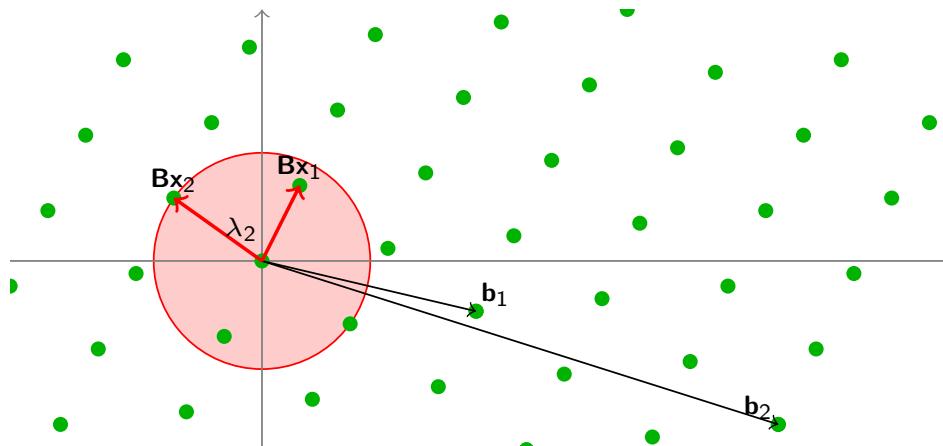
Given a lattice $\mathcal{L}(\mathbf{B})$ and a target point \mathbf{t} , find a lattice vector \mathbf{Bx} within distance $\|\mathbf{Bx} - \mathbf{t}\| \leq \gamma\mu$ from the target



Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP)

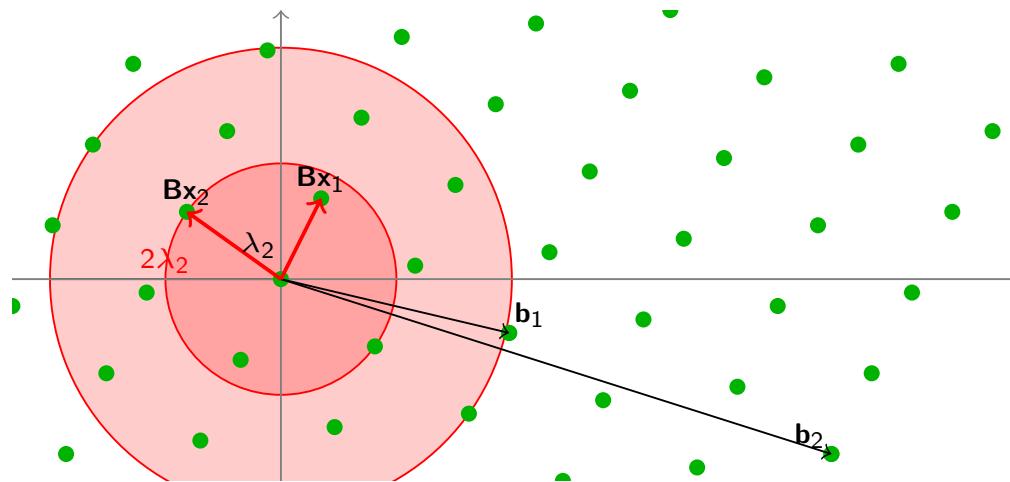
Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{Bx}_1, \dots, \mathbf{Bx}_n$ of length (at most) $\max_i \|\mathbf{Bx}_i\| \leq \lambda_n$



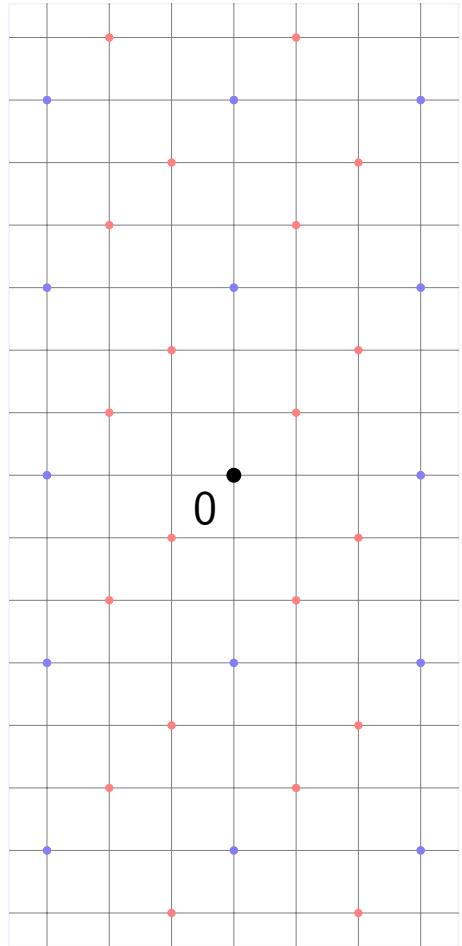
Approximate Shortest Independent Vectors Problem

Definition (Shortest Independent Vectors Problem, SIVP $_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$, find n linearly independent lattice vectors $\mathbf{Bx}_1, \dots, \mathbf{Bx}_n$ of length (at most) $\max_i \|\mathbf{Bx}_i\| \leq \gamma \lambda_n$

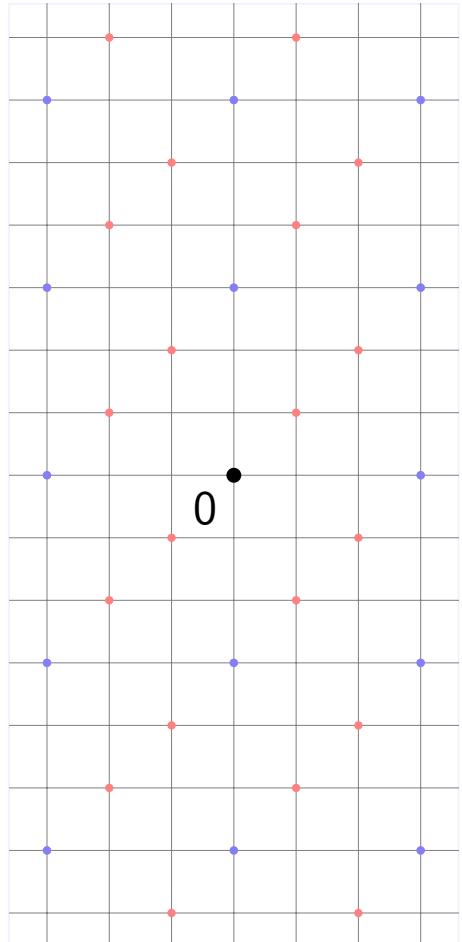


Random Lattices in Cryptography



- Cryptography typically uses (random) lattices Λ such that
 - $\Lambda \subseteq \mathbb{Z}^d$ is an integer lattice
 - $q\mathbb{Z}^d \subseteq \Lambda$ is periodic modulo a small integer q .
- Cryptographic functions based on q -ary lattices involve only arithmetic modulo q .

Random Lattices in Cryptography

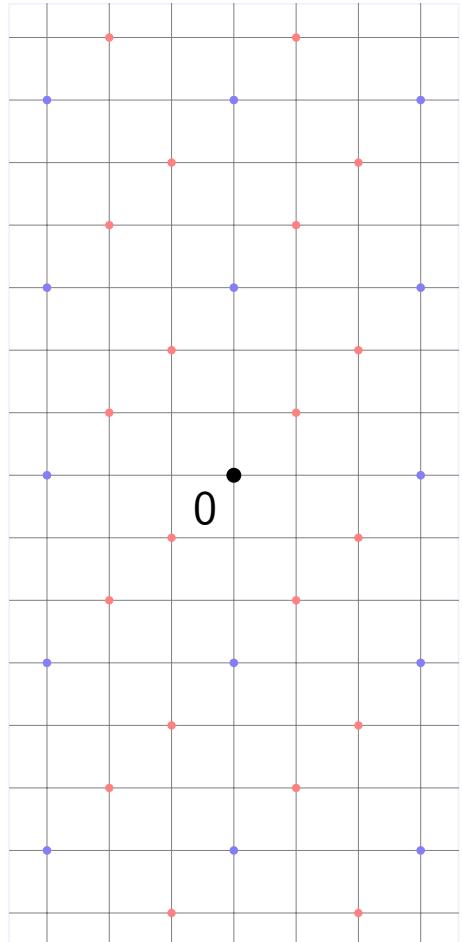


- Cryptography typically uses (random) lattices Λ such that
 - $\Lambda \subseteq \mathbb{Z}^d$ is an integer lattice
 - $q\mathbb{Z}^d \subseteq \Lambda$ is periodic modulo a small integer q .
- Cryptographic functions based on q -ary lattices involve only arithmetic modulo q .

Definition (q -ary lattice)

Λ is a q -ary lattice if $q\mathbb{Z}^n \subseteq \Lambda \subseteq \mathbb{Z}^n$

Random Lattices in Cryptography



- Cryptography typically uses (random) lattices Λ such that
 - $\Lambda \subseteq \mathbb{Z}^d$ is an integer lattice
 - $q\mathbb{Z}^d \subseteq \Lambda$ is periodic modulo a small integer q .
- Cryptographic functions based on q -ary lattices involve only arithmetic modulo q .

Definition (q -ary lattice)

Λ is a q -ary lattice if $q\mathbb{Z}^n \subseteq \Lambda \subseteq \mathbb{Z}^n$

Examples (for any $\mathbf{A} \in \mathbb{Z}_q^{n \times d}$)

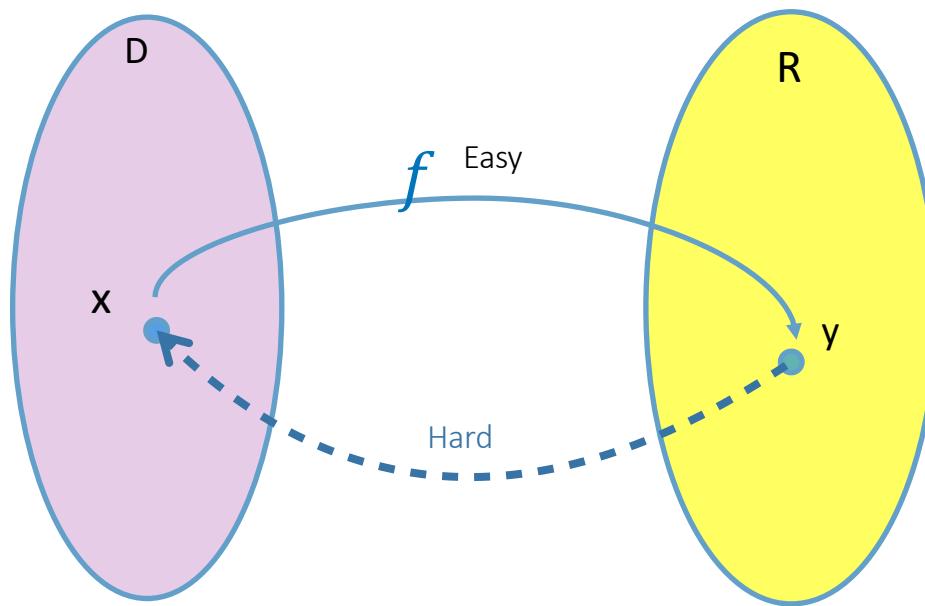
- $\Lambda_q(\mathbf{A}) = \{\mathbf{x} \mid \mathbf{x} \bmod q \in \mathbf{A}^T \mathbb{Z}_q^n\} \subseteq \mathbb{Z}^d$
- $\Lambda_q^\perp(\mathbf{A}) = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0} \bmod q\} \subseteq \mathbb{Z}^d$

A vibrant, abstract painting of a cityscape. The composition features a variety of buildings with thick, textured brushstrokes in shades of yellow, red, blue, green, and orange. In the foreground, there are several large, colorful structures that resemble stylized buildings or perhaps a bridge under construction. The overall style is Impressionistic with a focus on color and form.

Building Cryptography

One Way Functions

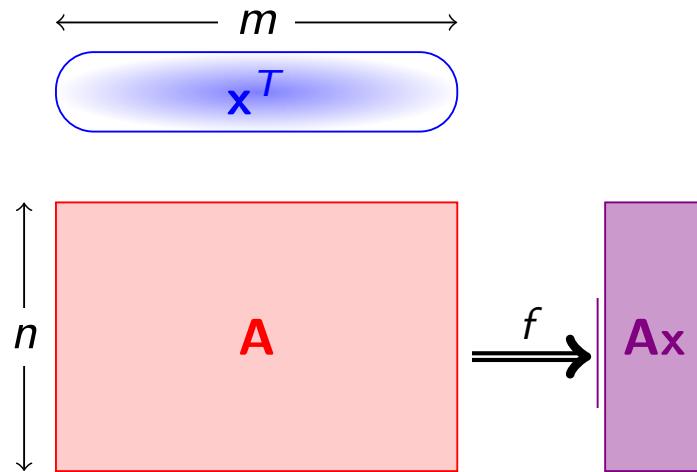
$$f: D \rightarrow R, \text{ One Way}$$



Most basic “primitive” in cryptography!

Ajtai's One Way Function

- Parameters: $m, n, q \in \mathbb{Z}$
- Key: $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$
- Input: $\mathbf{x} \in \{0, 1\}^m$
- Output: $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q$

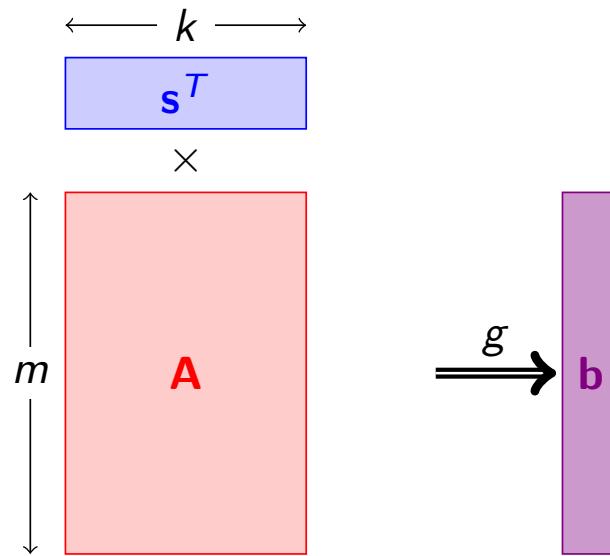


Theorem (A'96)

For $m > n \lg q$, if lattice problems (SIVP) are hard to approximate in the worst-case, then $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x} \bmod q$ is a one-way function.

Regev's One Way Function

- $\mathbf{A} \in \mathbb{Z}_q^{m \times k}$, $\mathbf{s} \in \mathbb{Z}_q^k$, $\mathbf{e} \in \mathcal{E}^m$.
- $g_{\mathbf{A}}(\mathbf{s}) = \mathbf{A}\mathbf{s} \pmod{q}$

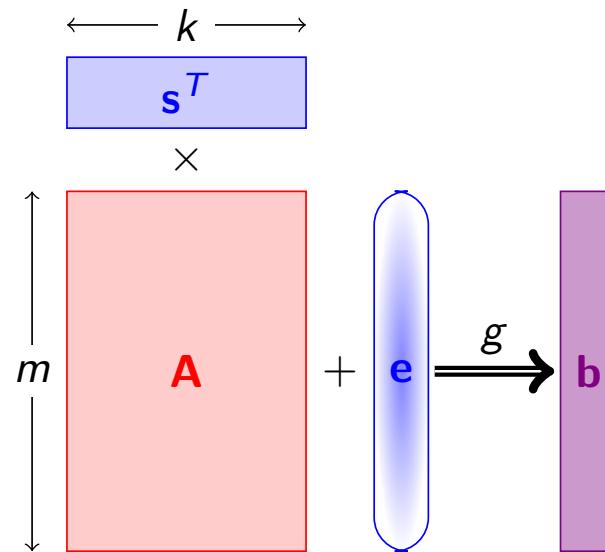


Regev's One Way Function

- $\mathbf{A} \in \mathbb{Z}_q^{m \times k}$, $\mathbf{s} \in \mathbb{Z}_q^k$, $\mathbf{e} \in \mathcal{E}^m$.
- $g_{\mathbf{A}}(\mathbf{s}; \mathbf{e}) = \mathbf{A}\mathbf{s} + \mathbf{e} \bmod q$
- Learning with Errors: Given \mathbf{A} and $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$, recover \mathbf{s} .

Theorem (R'05)

The function $g_{\mathbf{A}}(\mathbf{s}, \mathbf{e})$ is hard to invert on the average, assuming SIVP is hard to approximate in the worst-case.

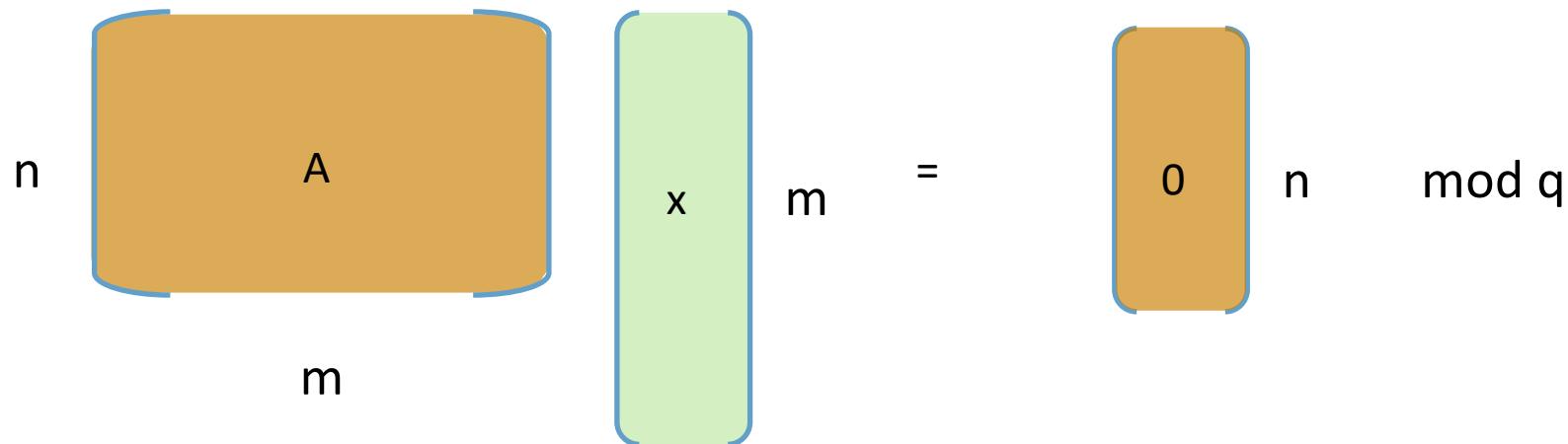


Short Integer Solution Problem

Let $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, $q = \text{poly}(n)$, $m = \Omega(n \log q)$

Given matrix A , find “short” (low norm) vector x such that

$$\mathbf{A}\mathbf{x} = 0 \bmod q \in \mathbb{Z}_q^n$$



Learning With Errors Problem

Distinguish “noisy inner products” from uniform

Fix uniform $s \in \mathbb{Z}_q^n$

$$a_1, b_1 = \langle a_1, s \rangle + e_1$$

$$a_2, b_2 = \langle a_2, s \rangle + e_2$$

$$a_m, b_m = \langle a_m, s \rangle + e_m$$

vs

$$a'_1, b'_1$$

$$a'_2, b'_2$$

$$a'_m, b'_m$$

a_i uniform $\in \mathbb{Z}_q^n$, $e_i \sim \phi \in \mathbb{Z}_q$

a_i uniform $\in \mathbb{Z}_q^n$, b_i uniform $\in \mathbb{Z}_q$

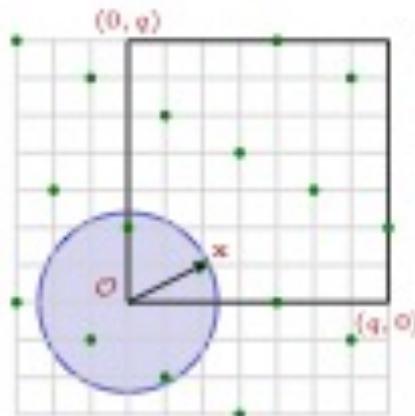
Recap:Lattice Based One Way Functions

Public Key $\mathbf{A} \in \mathbb{Z}_q^{n \times m}, q = \text{poly}(n), m = \Omega(n \log q)$

Based on SIS

$$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{Ax} \bmod q \in \mathbb{Z}_q^n$$

- Short \mathbf{x} , surjective
- CRHF if SIS is hard



Based on LWE

$$g_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{s}^t \mathbf{A} + \mathbf{e}^t \bmod q \in \mathbb{Z}_q^m$$

- Very short \mathbf{e} , injective
- OWF if LWE is hard [Reg05...]

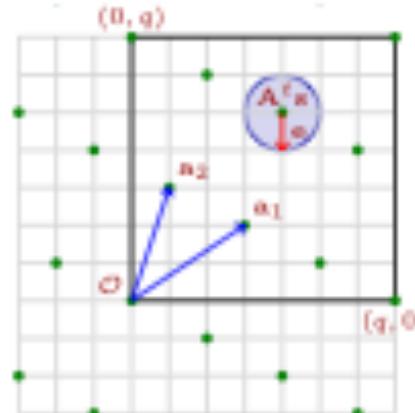
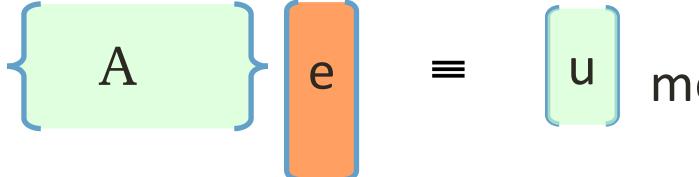


Image Credit: MP12 slides

Public Key Encryption [Regev05]

- ❖ Recall $A(e) = u \bmod q$ hard to invert
- ❖ Secret: e , Public : A, u  $= u \bmod q$

Public Key Encryption [Regev05]

- ❖ Recall $A(e) = u \bmod q$ hard to invert
- ❖ Secret: e , Public : A, u
- ❖ Encrypt (A, u) :
 - ❖ Pick random vector s
 - ❖ $c_0 = A^T s + \text{noise}$
 - ❖ $c_1 = u^T s + \text{noise} + \text{msg}$

Public Key Encryption [Regev05]

- ❖ Recall $A(e) = u \bmod q$ hard to invert
- ❖ Secret: e , Public : A, u
- ❖ Encrypt (A, u) :
 - ❖ Pick random vector s
 - ❖ $c_0 = A^T s + \text{noise}$
 - ❖ $c_1 = u^T s + \text{noise} + \text{msg}$
- ❖ Decrypt (e) :
 - ❖ $e^T c_0 - c_1 = \text{msg} + \text{noise}$

Small only if e is small

Public Key Encryption [Regev05]

- ❖ Recall $A(e) = u \bmod q$ hard to invert, easy with trapdoor
- ❖ Secret: e , Public : A, u
 - ❖ By SIS problem, hard to find short e
 - ❖ By LWE problem, ciphertext appears random
 - ❖ $c_0 = A^T s + \text{noise}$, looks like random
 - ❖ $c_1 = u^T s + \text{noise} + \text{msg}$, looks like random + msg
 - ❖ Hence hides message “msg”

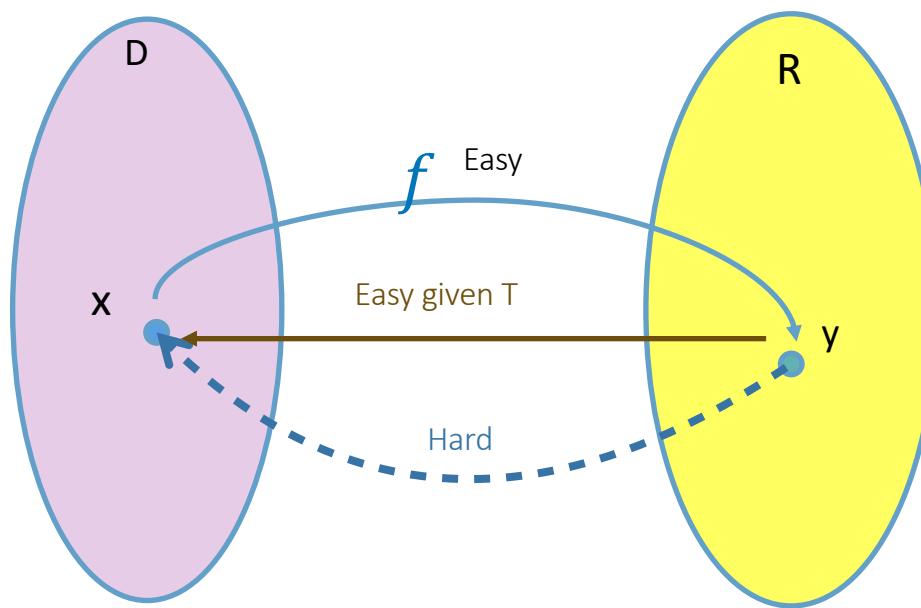
The background of the image is an abstract painting composed of large, bold, rectangular blocks of color. The colors used are yellow, red, green, and blue. The composition is roughly divided into a top section with a white box containing text, and a bottom section with a yellow box containing text. The colors are applied with visible brushstrokes and some texture.

For Signatures, need
Lattice Trapdoors

Trapdoor Functions

Generate (f, T)

$f: D \rightarrow R$, One Way



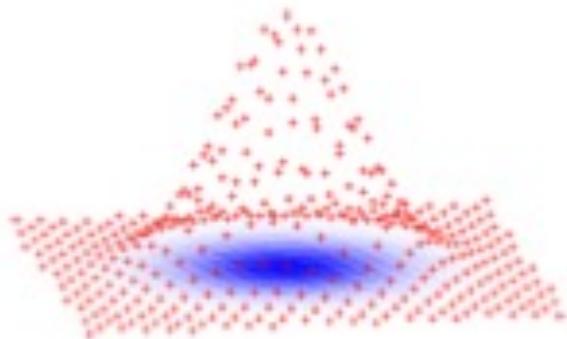
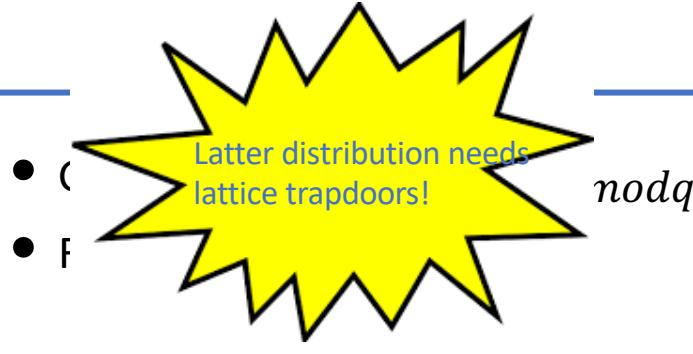
We will construct trapdoor functions from two lattice problems

Inverting functions for Crypto

- Given $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{Ax} \bmod q$
- Sample

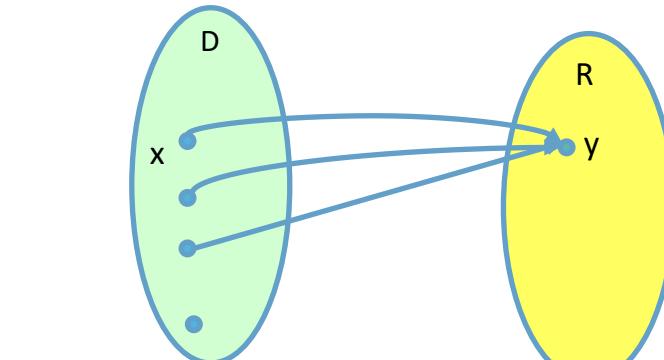
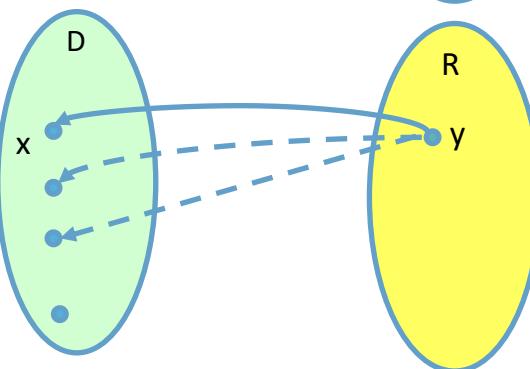
$$\mathbf{x}' \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$



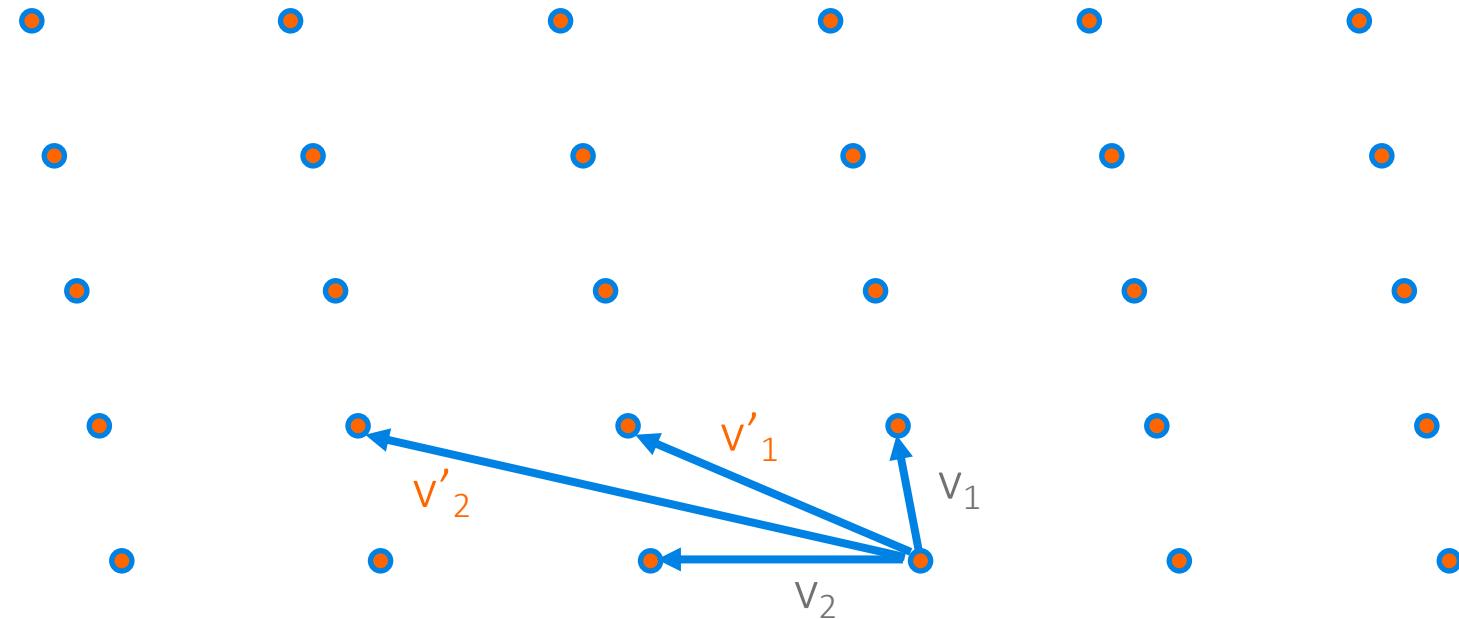
Preimage Sampleable Trapdoor Functions!

Generate (\mathbf{x}, \mathbf{y}) in two equivalent ways



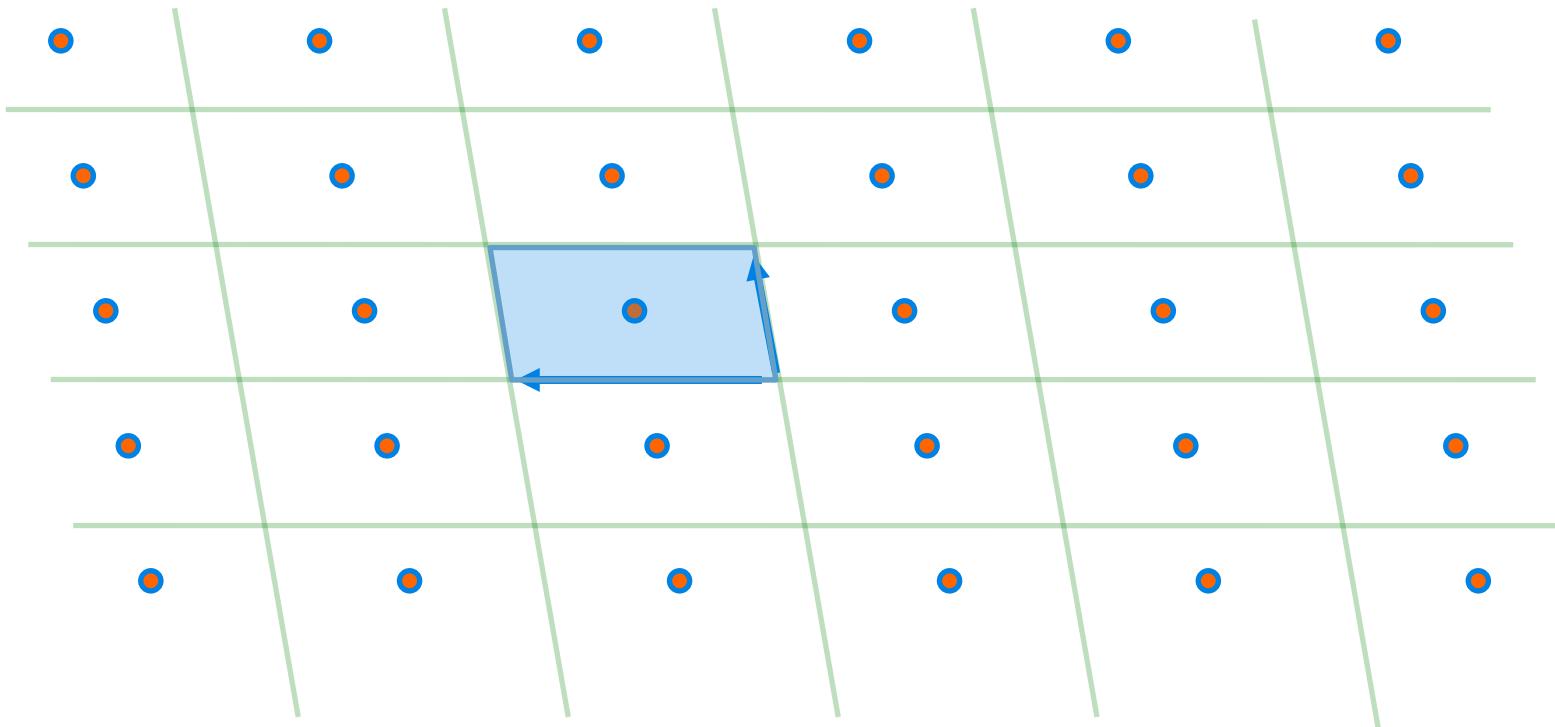
Same Distribution (Discrete Gaussian, Uniform) ! 55

Lattice Trapdoors: Geometric View

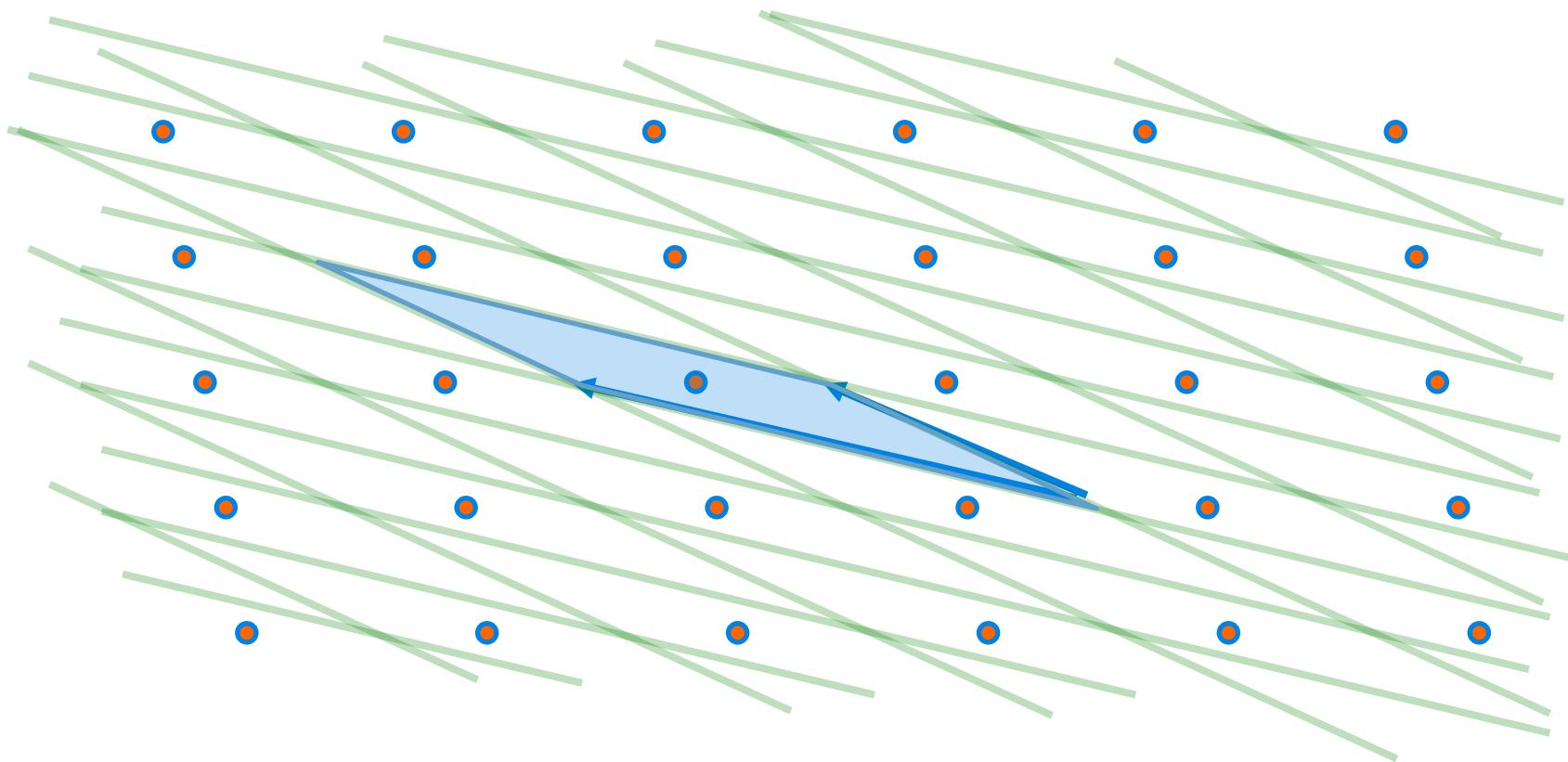


Multiple Bases

Parallelopipeds

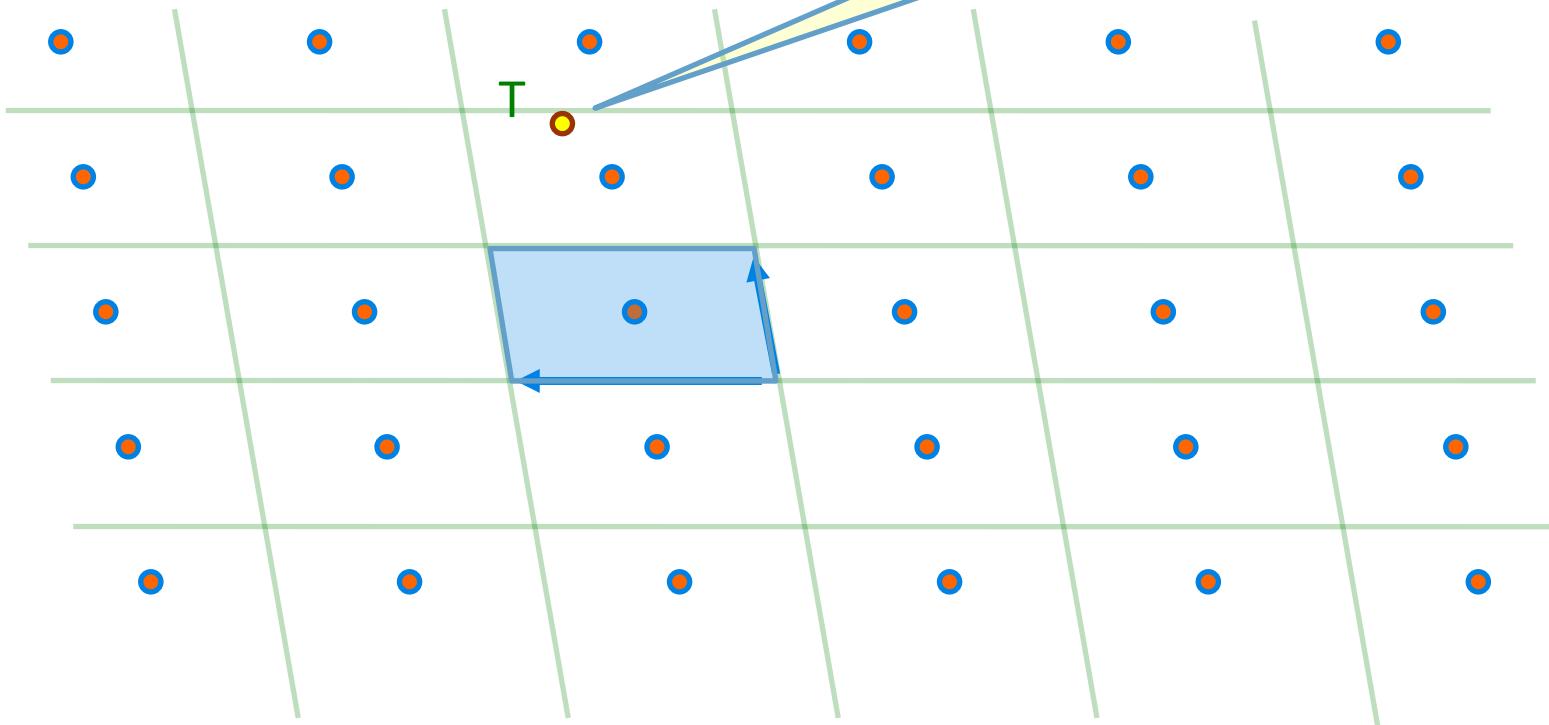


Parallelopipeds



Good Basis

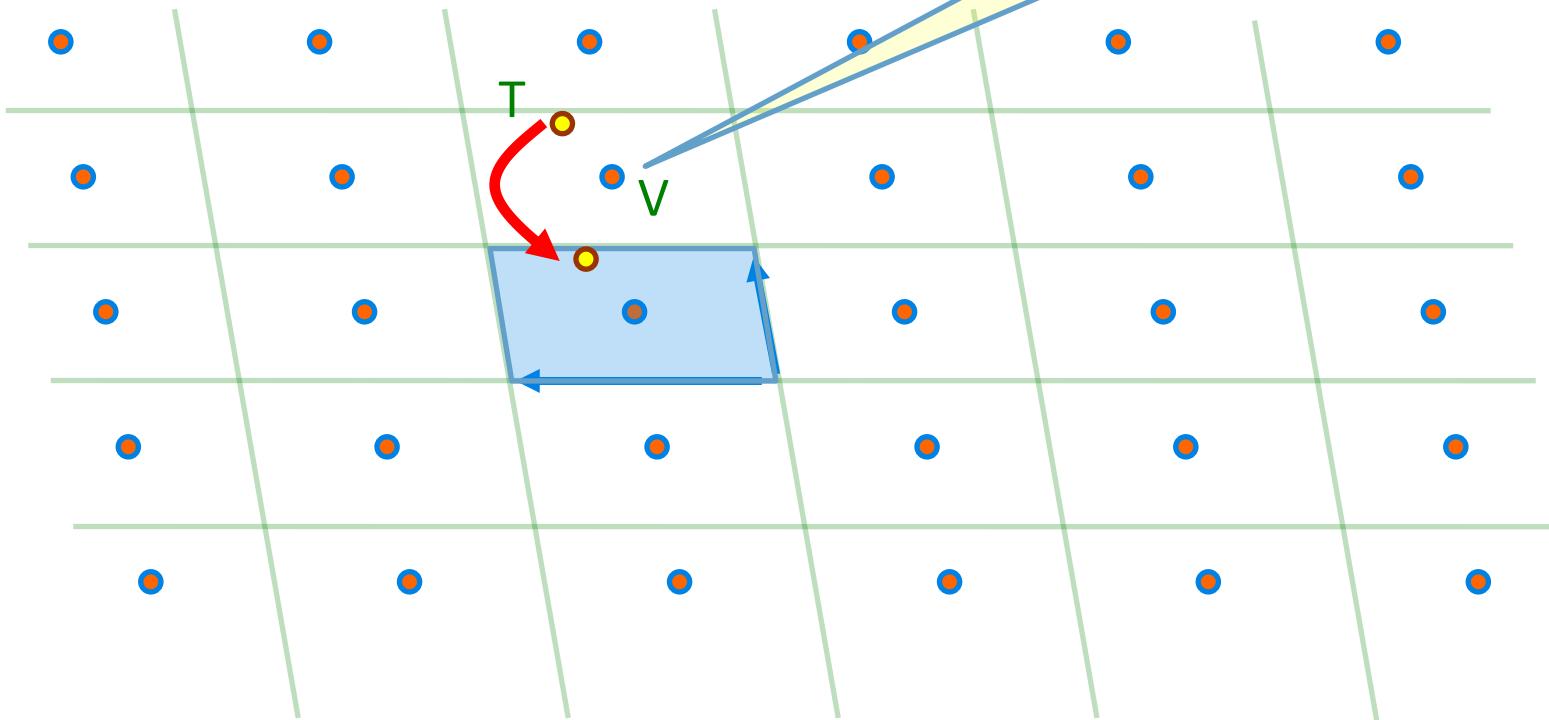
What's my
closest lattice
point?



“Quite short” and “nearly orthogonal”

Good Basis

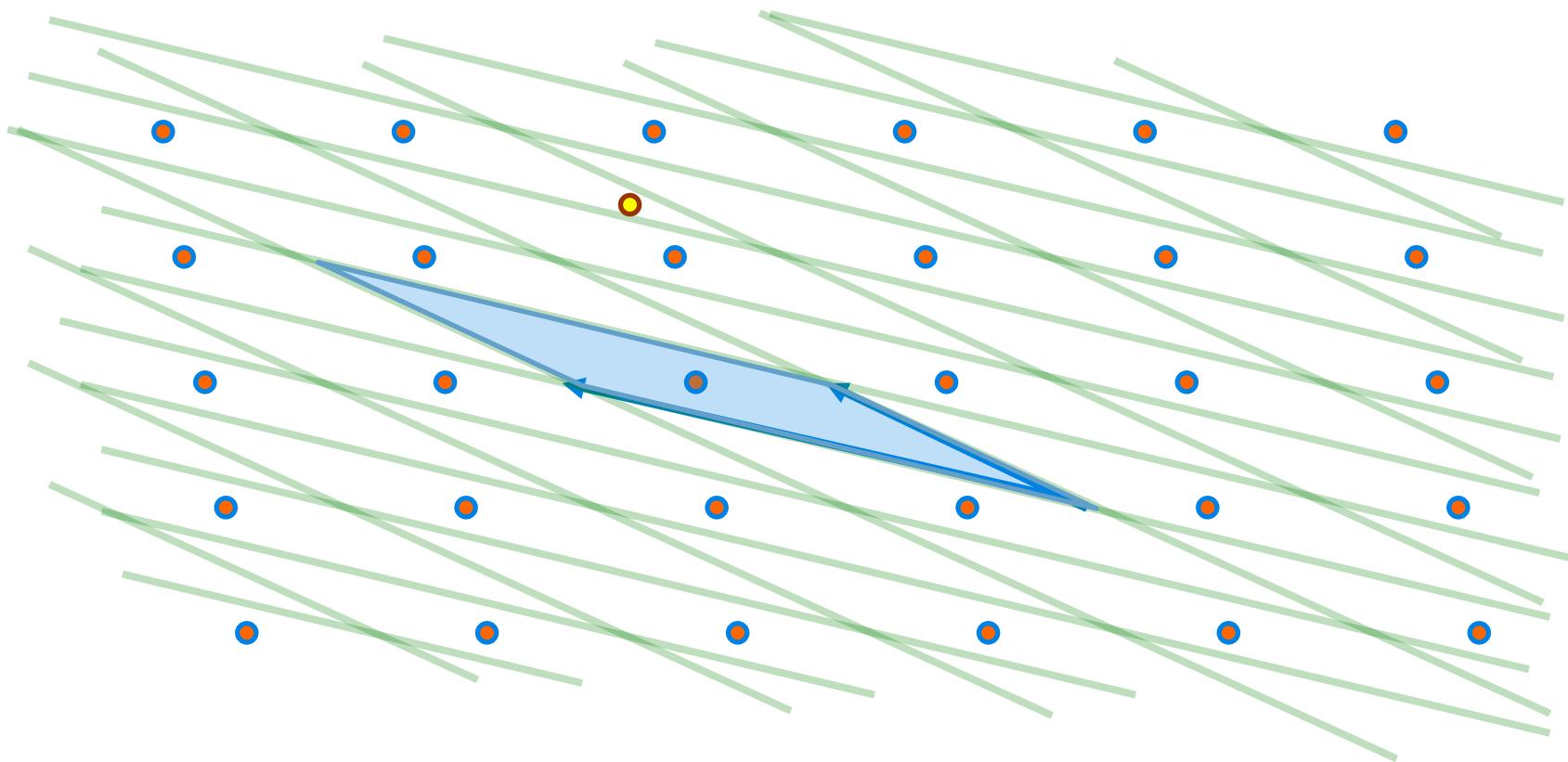
Declared
closest point



Output center of parallelopipid containing T

Pretty Accurate...

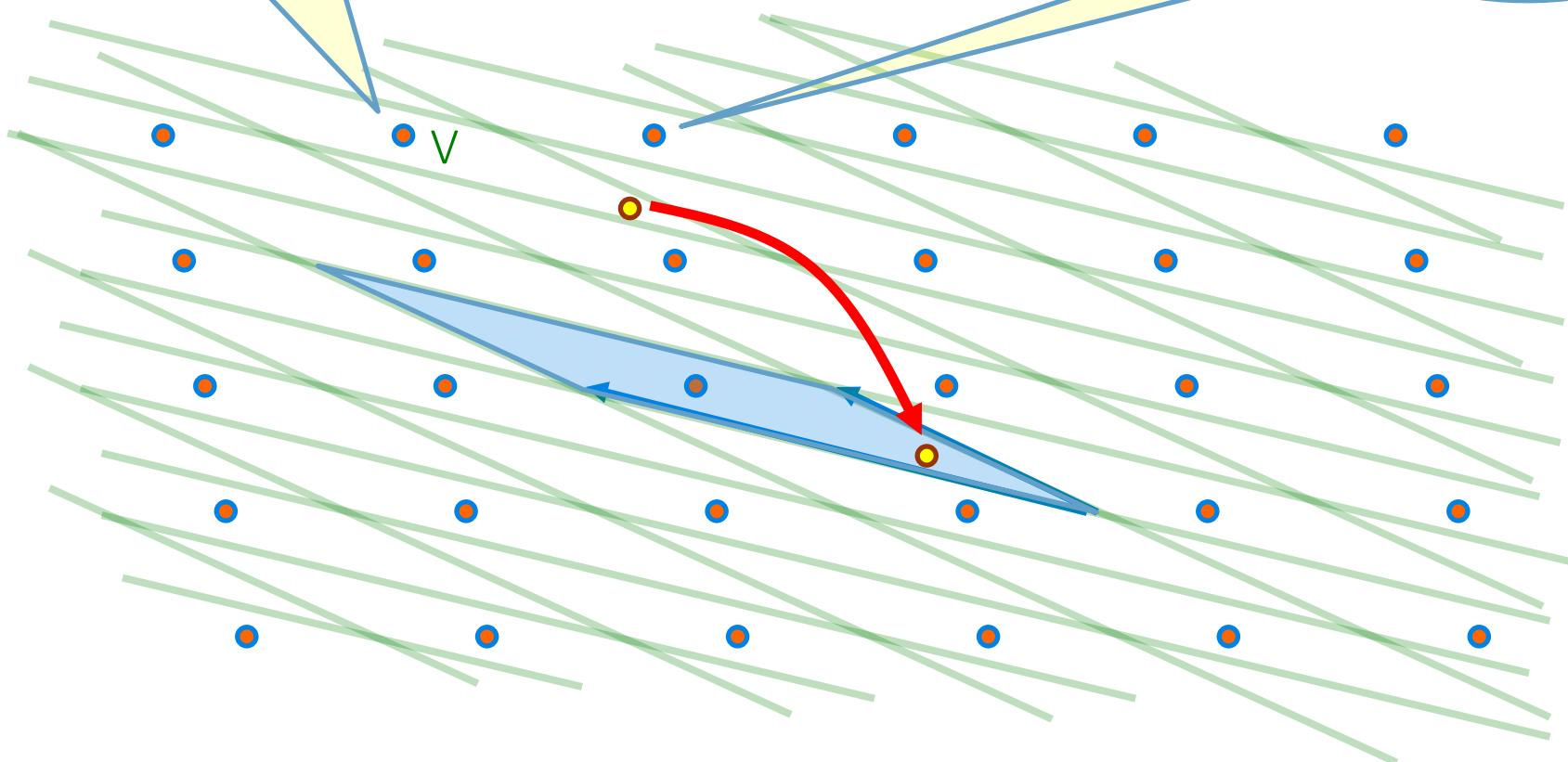
Bad Basis



Bad Basis

Declared
closest point

Closer Lattice
point



Output center of parallelopipid containing T

Not So Accurate...

Basis quality and Hardness

- SVP, CVP, SIS (...) hard given arbitrary (bad) basis
- Some hard lattice problems are easy given a good basis
- Will exploit this **asymmetry**

Use Short Basis as Cryptographic Trapdoor!

Lattice Trapdoors

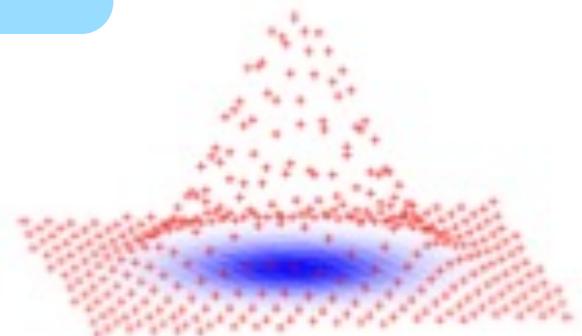
Inverting Our Function

Recall $\mathbf{u} = f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A} \mathbf{x} \bmod q$

Want

$$\mathbf{x}' \leftarrow f_{\mathbf{A}}^{-1}(\mathbf{u})$$

with prob $\propto \exp(-\|\mathbf{x}'\|^2/\sigma^2)$

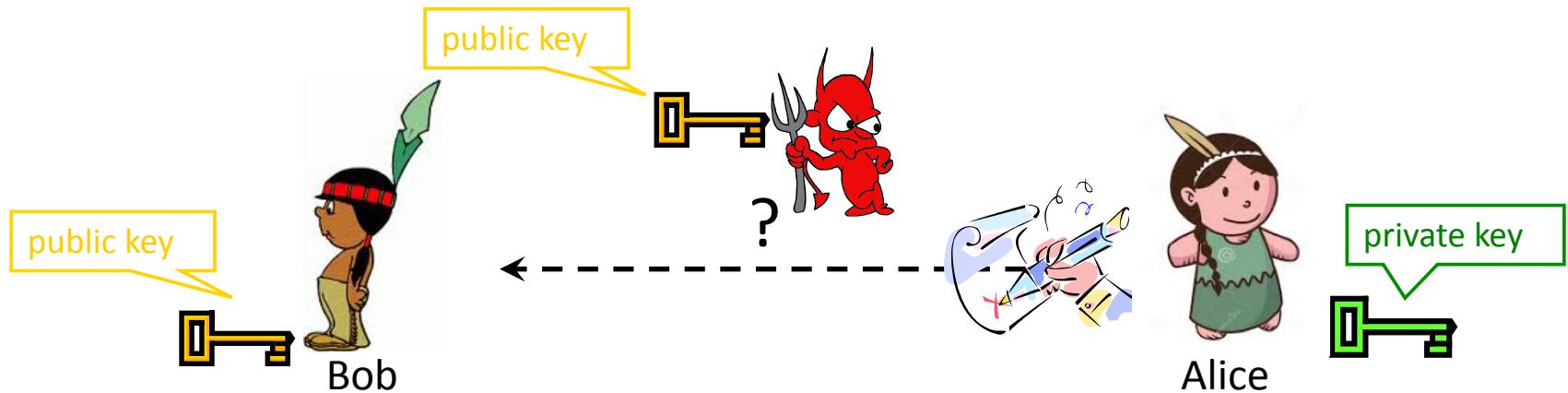


The Lattice

$$\Lambda = \{\mathbf{x}: \mathbf{A}\mathbf{x} = 0 \bmod q\} \subseteq \mathbb{Z}_q^m$$

Short basis for Λ lets us sample from $f_{\mathbf{A}}^{-1}(\mathbf{u})$ with correct distribution!

Digital Signatures



Everybody knows Alice's **public key**

Only Alice knows the corresponding **private key**

Goal: Alice sends a “digitally signed” message

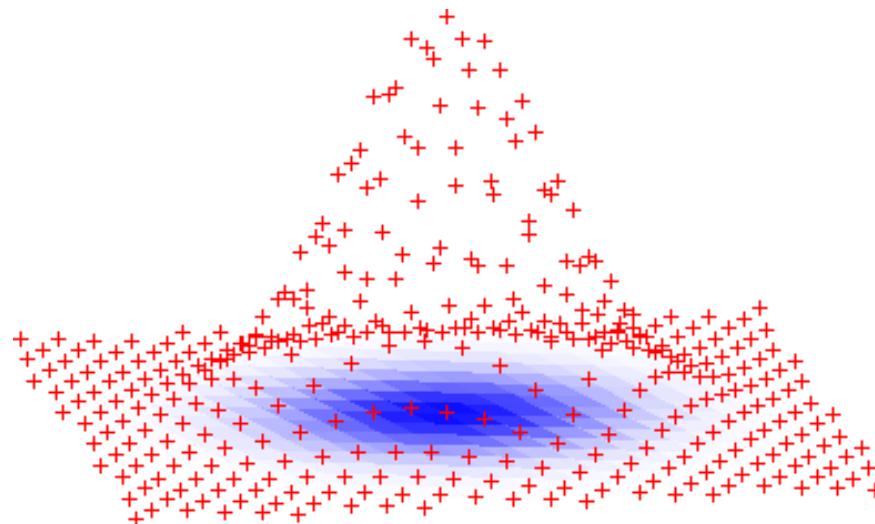
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

Digital Signatures from Lattices

- ▶ Generate uniform $vk = \mathbf{A}$ with secret ‘trapdoor’ $sk = \mathbf{T}$.

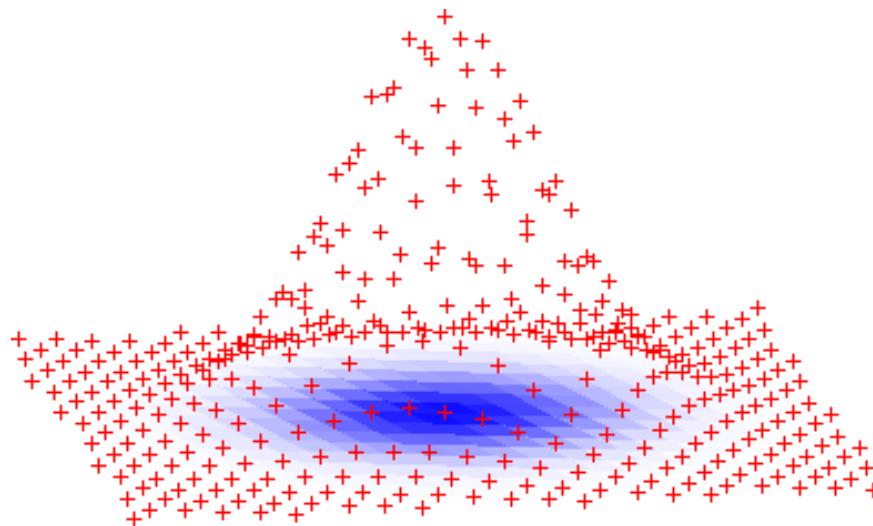
Digital Signatures from Lattices

- ▶ Generate uniform $vk = \mathbf{A}$ with secret ‘trapdoor’ $sk = \mathbf{T}$.
- ▶ $\text{Sign}(\mathbf{T}, \mu)$: use \mathbf{T} to **sample** a **short** $\mathbf{z} \in \mathbb{Z}^m$ s.t. $\mathbf{A}\mathbf{z} = H(\mu) \in \mathbb{Z}_q^n$.
Draw \mathbf{z} from a distribution that **reveals nothing** about secret key:



Digital Signatures from Lattices

- ▶ Generate uniform $vk = \mathbf{A}$ with secret ‘trapdoor’ $sk = \mathbf{T}$.
- ▶ $\text{Sign}(\mathbf{T}, \mu)$: use \mathbf{T} to **sample** a **short** $\mathbf{z} \in \mathbb{Z}^m$ s.t. $\mathbf{A}\mathbf{z} = H(\mu) \in \mathbb{Z}_q^n$.
Draw \mathbf{z} from a distribution that **reveals nothing** about secret key:



- ▶ $\text{Verify}(\mathbf{A}, \mu, \mathbf{z})$: check that $\mathbf{A}\mathbf{z} = H(\mu)$ and \mathbf{z} is sufficiently short.
- ▶ Security: forging a signature for a new message μ^* requires finding short \mathbf{z}^* s.t. $\mathbf{A}\mathbf{z}^* = H(\mu^*)$. This is SIS: hard!

We saw some foundations...

Also promised opportunities...

Lots and lots of questions

- Multilinear (even bilinear) maps from lattices?
- Non-Interactive Key Exchange?
- Efficient Threshold Signatures?
- Witness Encryption?

Bilinear Maps

Let G_1, G_2, G_T be groups of prime order and g_i denote the generator of G_i

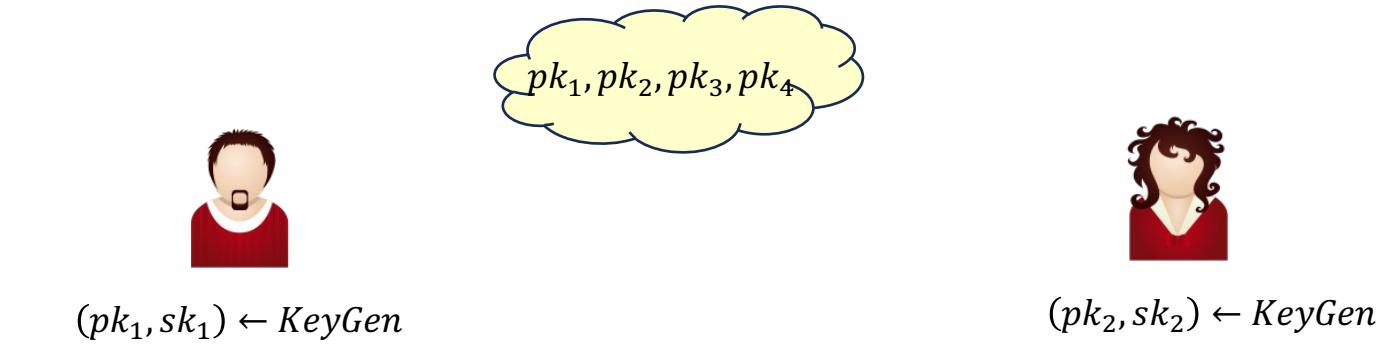
$$e: G_1 \times G_2 \rightarrow G_T$$

$$e(g_1^a, g_2^b) = e(g_1, g_2)^{ab}$$

Hardness Assumption (roughly): Adversary can only compute pairings, take linear combinations and test if output is zero

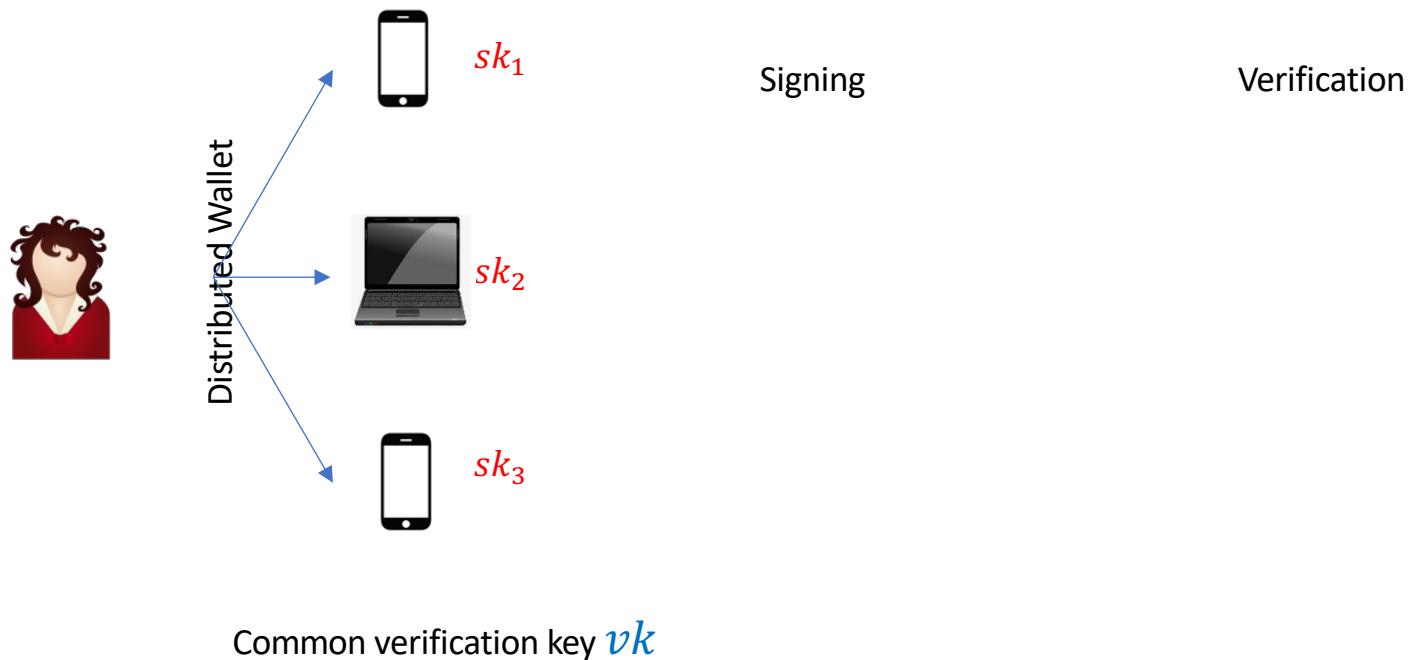
Lattice version?

Non-Interactive Key Exchange

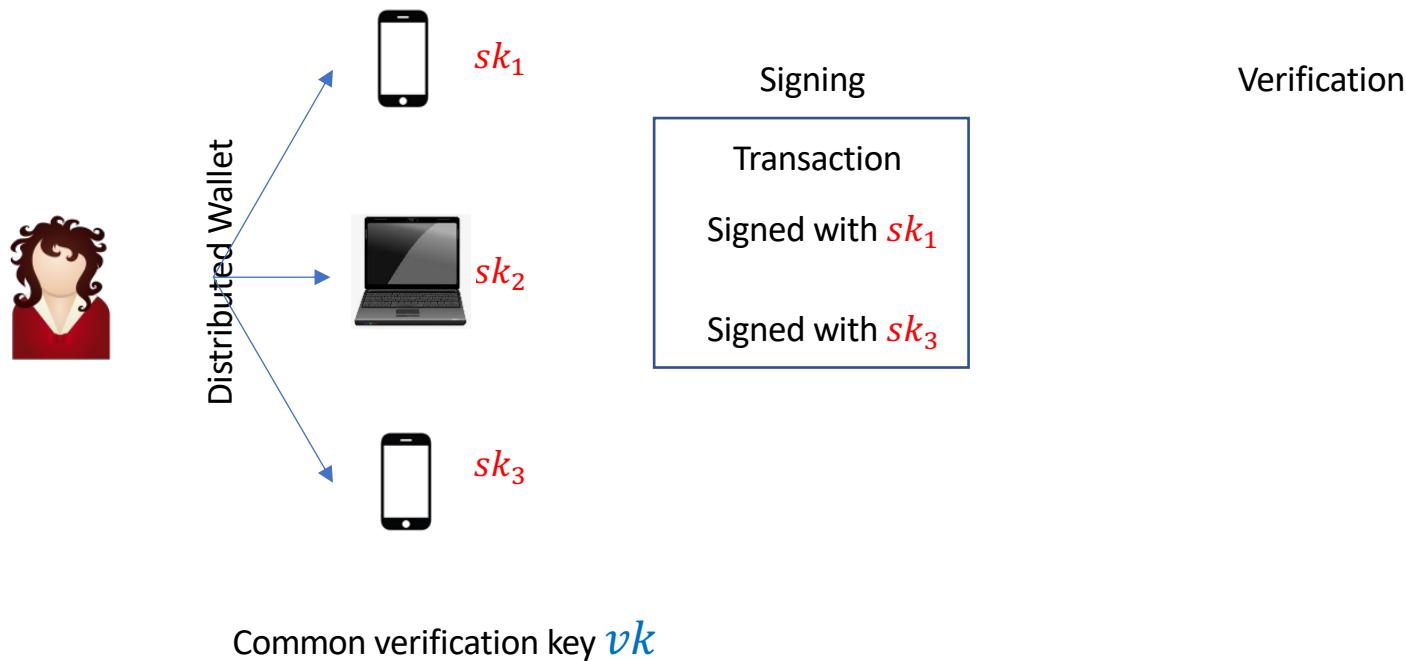


- Derive a shared key K_{1234}

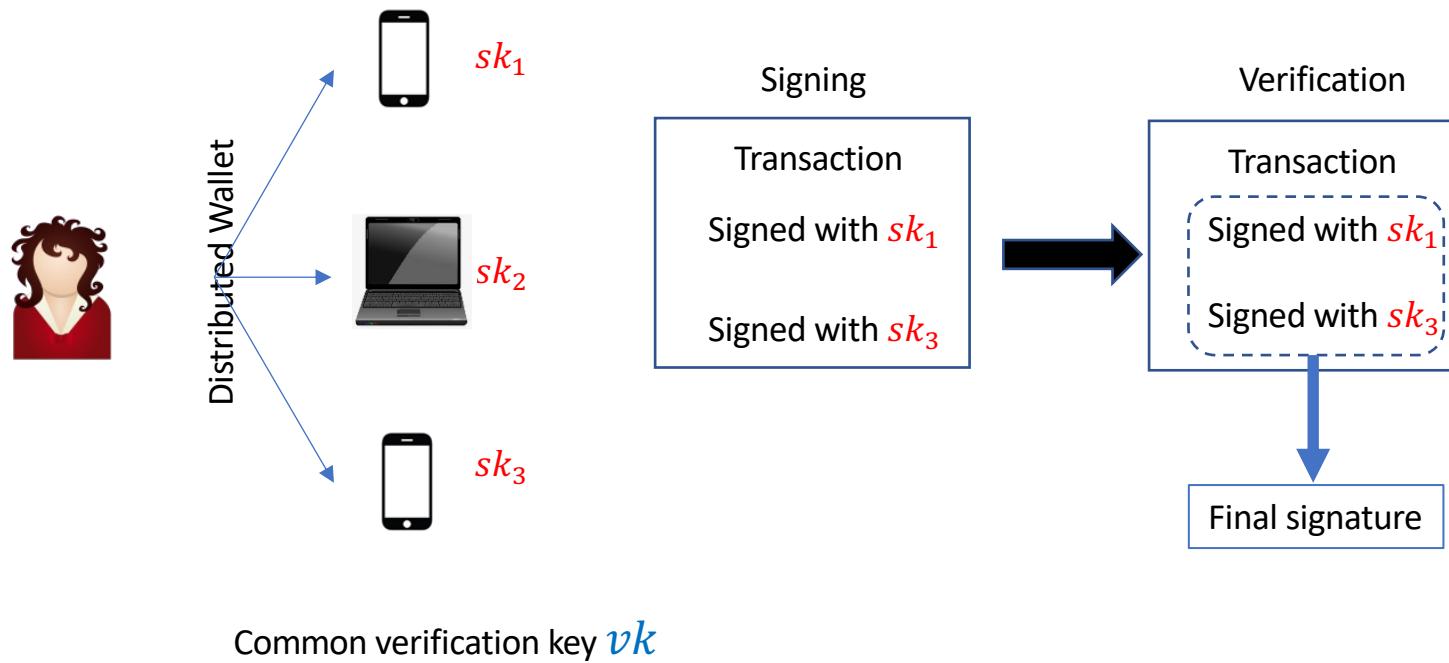
Post Quantum Threshold Signatures



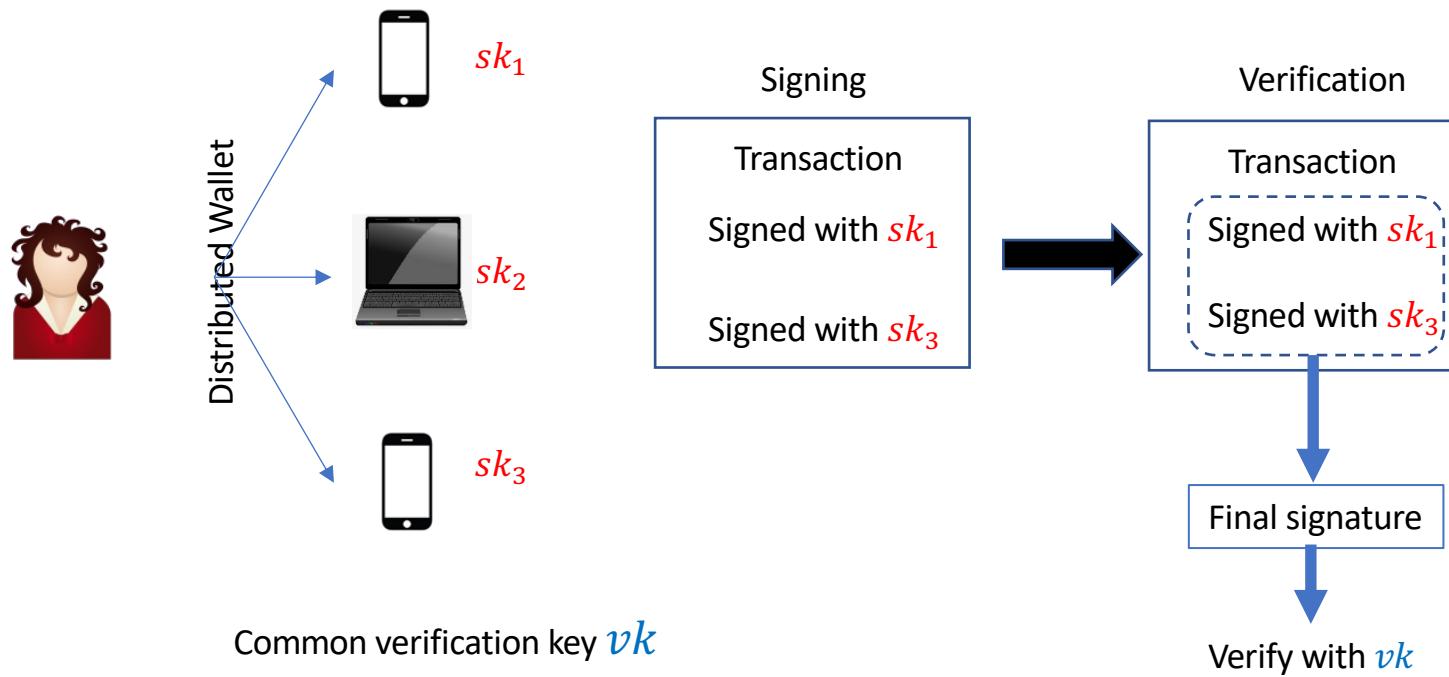
Post Quantum Threshold Signatures



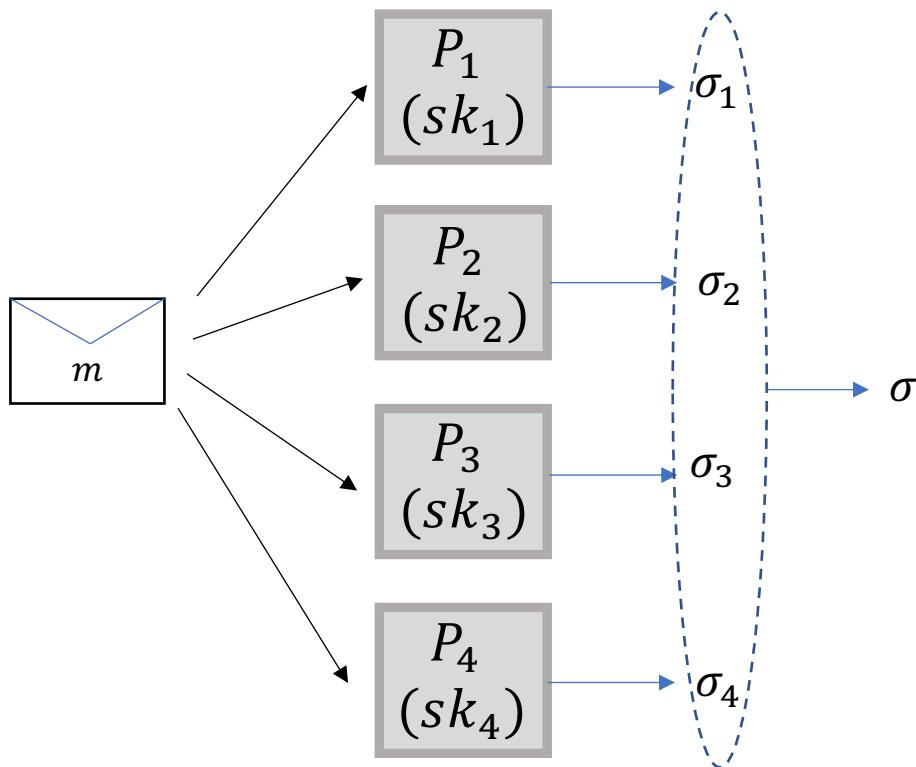
Post Quantum Threshold Signatures



Post Quantum Threshold Signatures



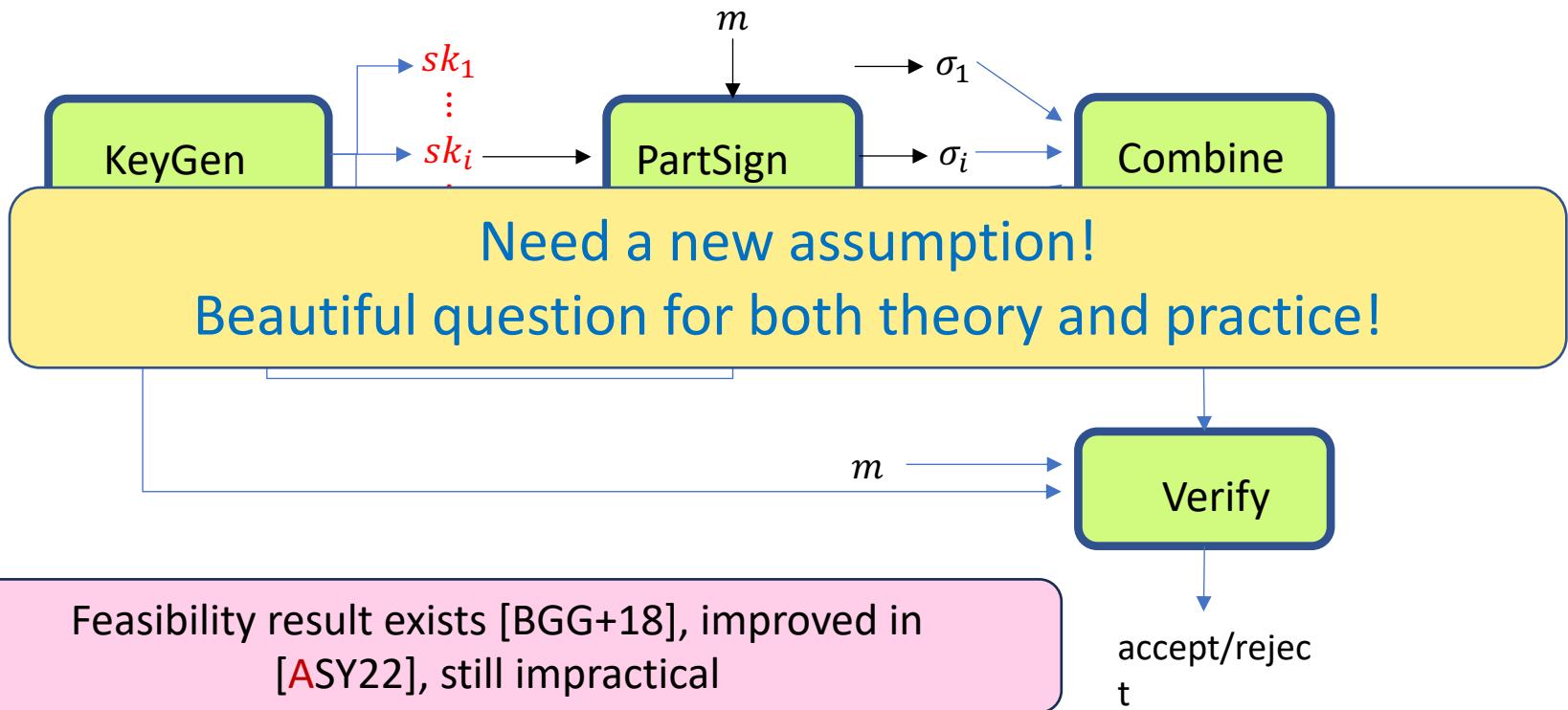
Post Quantum Threshold Signatures



Correctness – Signature generated from contribution of a **valid** set of participants should verify.

Security - Any **invalid** set of participants should not be able to generate a valid signature

Post Quantum Threshold Signatures



Witness Encryption

Encrypt against NP statement, Decrypt with witness!

- Encrypt $(x, m) \rightarrow ct$
- Decrypt $(ct, w) \rightarrow m$ iff w is witness for statement x

Currently no construction from good assumption!

Summary

- Post Quantum Crypto: Intro
- Basics of Lattices
- Hard Problems on Lattices
- Public Key Encryption
- Digital Signatures
- Taste of open questions

Thank You

Images Credit: Hans Hoffmann

Slides Credit: Daniele
Micciancio, Chris Peikert