

Introduction to Quantum Algorithms

Krishnamoorthy Dinesh (IIT Palakkad)

Workshop on Quantum Algorithms and Cryptography
Pre-conference workshop, FSTTCS 2025, BITS Goa

December 14, 2025

Qubits and Quantum Gates

What is a qubit ?

Qubit (Quantum Bit)

States - $|0\rangle$, $|1\rangle$ ("Ket 0", "Ket 1")

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \quad \alpha, \beta \in \mathbb{C} \quad \psi \text{ ("Psi")}$$
$$|\alpha|^2 + |\beta|^2 = 1.$$

- Examples of 1-qubit: $|\psi_1\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$, $|\psi_2\rangle = \frac{1}{\sqrt{3}}|0\rangle + \sqrt{\frac{2}{3}}|1\rangle$.
- Non-example: $\frac{1}{2}|0\rangle + \frac{1}{2}|1\rangle$. (**Why ?**)

Qubits and Quantum Gates

What is a k -qubit ?

2-qubit

- Basis states are $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$.
- **Form:** $|\psi\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$ $a, b, c, d \in \mathbb{C}$ and $|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$.
- Example: $\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle$ (**Valid ?**)

k -qubit

- 2^k basis states: $\overbrace{0\dots0}^k, \overbrace{0\dots0}^{k-1}1, \dots, \overbrace{1\dots1}^k$.
- **Form:** $\sum_{x \in \{0,1\}^k} a_x |x\rangle$ every $a_x \in \mathbb{C}$
 $\sum_x |a_x|^2 = 1$.
- Each state viewed as a vector in \mathbb{C}^{2^k} .

Qubits and Quantum Gates

Qubits and Measurement

- Measuring a qubit causes \rightarrow “collapse” to a basis state.
- Which basis state ? Dictated by the amplitude of the state.

Example: Suppose $|\psi\rangle = \frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle - \frac{1}{2}|11\rangle$.

Measuring $|\psi\rangle$ gives

$$\begin{cases} |00\rangle & \text{with probability } \left|\frac{1}{2}\right|^2 \\ |01\rangle & \text{with probability } \left|\frac{1}{2}\right|^2 \\ |10\rangle & \text{with probability } \left|\frac{1}{2}\right|^2 \\ |11\rangle & \text{with probability } \left|-\frac{1}{2}\right|^2 \end{cases}$$

- **Measuring a state destroys it !** (not reversible).
- All measurements in **standard basis**.

Take away: Measure a k -qubit $\sum_x a_x |x\rangle$,
... Gets $|x\rangle$ with probability $|a_x|^2$.

Qubits and Quantum Gates

Quantum Gates

Unitary matrix U

U is a matrix over \mathbb{C} with $UU^* = U^*U = I$

Easy to remember: “Inverse is (conjugate) transpose”.

- Example:

$$H = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \text{ (Why ?)}$$

- Non-example:

$$\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

Qubits and Quantum Gates

Quantum Gate: Mai aisa kyu hu ?

Why Unitary ?

Quantum physics: all quantum operations must be

- ① linear, and
- ② maps qubits to qubits (length preserving)

Linear algebra: Maps that are linear and length preserving is *exactly* Unitary.

- Unitary maps are invertible. Inverse of U is U^* .

Examples

Qubits and Quantum Gates

More examples of quantum gates - 1

Qubits and Quantum Gates

More examples of quantum gates - 2

Qubits and Quantum Gates

Putting everything together: an example

CHSH Game

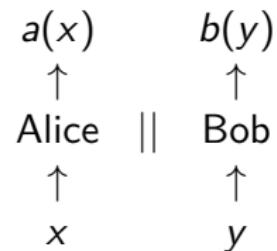
Setup

- Does quantum gives us any advantage over classical ?
- CHSH = Clauser, Horne, Shimony and Holt (1970s)

Game setup

- **Input:** Alice gets $x \in \{0, 1\}$ alone.
Bob gets $y \in \{0, 1\}$ alone.
- **Output:** Alice output $a \in \{0, 1\}$ (depending on x).
Bob must output $b \in \{0, 1\}$ (depending on y) such that ...

$$x \wedge y = a(x) \oplus b(y)$$



- **Obs:** Cannot be correct always !
- **Goal:** Find a strategy s.t. equality holds for as many inputs as possible.

CHSH Game

Classical strategies and its limitations

Strategy 1: $a(x) = 1, b(y) = y$

x	y	$a(x)$	$b(y)$	$x \wedge y$	$a(x) \oplus b(y)$	
0	0	1	0	0	1	
0	1	1	1	0	0	Success = $1/4 = 25\% = 0.25$
1	0	1	0	0	1	
1	1	1	1	1	0	

Strategy 2: $a(x) = \neg x, b(y) = y$

x	y	$a(x)$	$b(y)$	$x \wedge y$	$a(x) \oplus b(y)$	
0	0	1	0	0	1	
0	1	1	1	0	0	Success = $3/4 = 75\% = 0.75$
1	0	0	0	0	0	
1	1	0	1	1	1	

Take away: No classical strategy succeed with probability more than 0.75
(**Why ?** Just enumerate and check !)

CHSH Game

A quantum strategy

Quantum strategy Use EPR pair !

Description of A_x, B_y

x	A_x
0	I
1	$R_{\pi/4}$

y	B_y
0	$R_{\pi/8}$
1	$R_{-\pi/8}$

CHSH Game

Quantum strategy when $x = 0, y = 0$

Analysis

- Suppose $x = 0, y = 0$.
- When do we succeed ? Succeed if outcome is $|0\rangle_A|0\rangle_B$ or $|1\rangle_A|1\rangle_B$.
- What is the probability ? Sum of probabilities of measuring

$$\text{Before: } \frac{1}{\sqrt{2}}|0\rangle_A|0\rangle_B + \frac{1}{\sqrt{2}}|1\rangle_A|1\rangle_B$$

$$\begin{aligned}\text{After: } & \frac{1}{\sqrt{2}}|0\rangle_A(R_{\pi/8}|0\rangle_B) \\ & + \frac{1}{\sqrt{2}}|1\rangle_A(R_{\pi/8}|1\rangle_B)\end{aligned}$$

- Simplify:

$$\begin{aligned}& \frac{1}{\sqrt{2}}\cos(\pi/8)|0\rangle_A|0\rangle_B + \frac{1}{\sqrt{2}}\sin(\pi/8)|0\rangle_A|1\rangle_B \\ & - \frac{1}{\sqrt{2}}\sin(\pi/8)|1\rangle_A|0\rangle_B + \frac{1}{\sqrt{2}}\cos(\pi/8)|1\rangle_A|1\rangle_B\end{aligned}$$

- Success probability - $\frac{1}{2}\cos^2(\pi/8) + \frac{1}{2}\cos^2(\pi/8) = \cos^2(\pi/8)$.

CHSH Game

Quantum strategy can succeed with probability 0.853

- Similar analysis for other cases ($x = 0, y = 1$; $x = 1, y = 0$; $x = 1, y = 1$): success probability is $\cos^2(\pi/8) \approx 0.853$.
- Strategy succeeds with probability $0.853 > 0.75$ (for all inputs).

Take away: Quantum strategy can succeed with probability 0.853

- **Surprise !** No quantum strategy can do better than $\cos^2(\pi/8)$

Quantum Queries

Exploiting states in superposition

- Toffoli gate can compute \wedge and \neg .
- Any Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ can be computed using \wedge, \neg .
- Compute any Boolean function \rightarrow U_f
Use Toffoli gates.
- $U_f: |x\rangle |b\rangle \mapsto |x\rangle |b \oplus f(x)\rangle$
- Give an address, get value at the address.

Quantum Queries

Computing AND of 3 bits using Toffoli

Quantum Query Model

Significance

$$U_f \left(\sum_x a_x |x\rangle |b\rangle \right) = \sum_x a_x |x\rangle |b \oplus f(x)\rangle$$

Benefit: Ability to evaluate a Boolean function in superposition of inputs.

Query Model

We assume that

- ① Given an f , U_f is available
- ② Each application of U_f ("quantum query") is unit cost
- ③ Only the number of times U_f is applied matters

- Why (1) ? f is usually a verification and is easy.
- Why (2), (3) ? Reads to input (in superposition) is a resource
- Called as the **quantum query model**. U_f is often called as oracle.

Quantum Query Model

Phased Oracle

Let f be an n -bit Boolean function.

- Given a U_f , consider the following circuit
- What is its behaviour ? Recall $U_f: |x\rangle |b\rangle \mapsto |x\rangle |b \oplus f(x)\rangle$

$$U_f \left(|x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \right) = |x\rangle \otimes \left(\frac{1}{\sqrt{2}} |0 \oplus f(x)\rangle - \frac{1}{\sqrt{2}} |1 \oplus f(x)\rangle \right)$$

Quantum Query Model

Phased Oracle

$$U_f \left(|x\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \right) = |x\rangle \otimes \left(\frac{1}{\sqrt{2}}|0 \oplus f(x)\rangle - \frac{1}{\sqrt{2}}|1 \oplus f(x)\rangle \right)$$

- $f(x) = 0 \rightarrow |x\rangle \otimes \left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle \right) = |x\rangle |-\rangle.$
- $f(x) = 1 \rightarrow |x\rangle \otimes \left(\frac{1}{\sqrt{2}}|1\rangle - \frac{1}{\sqrt{2}}|0\rangle \right) = -|x\rangle |-\rangle.$

Take away: $U_f(|x\rangle |-\rangle) = (-1)^{f(x)} |x\rangle |-\rangle$

- Ancilla dropped. This gives a **phased oracle** (value appears in phase).
- $U_f^\pm: |x\rangle \mapsto (-1)^{f(x)} |x\rangle.$

Given an f , from now on assume, U_f and U_f^\pm are available.

Summary so far

- Saw what is ...
 - a qubit, k -qubit (states in superposition)
 - a quantum gates/operators (unitary)
 - a measurement
- CHSH games – quantum beats classical !
- Perform operation in superposition: U_f – oracle for a Boolean function f .
- Quantum query model
- U_f^\pm – phased oracle.

Plan for the rest of the talk

Understand couple of quantum algorithms and how they work

Compute parity of two bits

Warm up

- **Given:** two bits a_0, a_1 via an oracle U_a .
- **Task:** compute $a_0 \oplus a_1$.

What is U_a ?

- $U_a |0\rangle |0\rangle = |0\rangle |a_0\rangle$
- $U_a |1\rangle |0\rangle = |1\rangle |a_1\rangle$

- **Issue:** Need to use U_a twice (Two queries).
- Any classical algorithm must read twice ! (**Why ?**)

Question: Is it possible to use **only once** and correctly compute $a_0 \oplus a_1$?

Quantum algorithm to compute parity of two bits

One query quantum algorithm

- Will use U_a^\pm : phased U_a
- Consider the following circuit:

Recall U_a^\pm .

- $U_a^\pm |0\rangle = (-1)^{a_0} |0\rangle$
- $U_a^\pm |1\rangle = (-1)^{a_1} |1\rangle$

State before measurement:

$$H \left(\frac{(-1)^{a_0}}{\sqrt{2}} |0\rangle + \frac{(-1)^{a_1}}{\sqrt{2}} |1\rangle \right)$$

Quantum algorithm to compute parity of two bits

One query quantum algorithm

State before measurement:

$$H \left(\frac{(-1)^{a_0}}{\sqrt{2}} |0\rangle + \frac{(-1)^{a_1}}{\sqrt{2}} |1\rangle \right) = \frac{(-1)^{a_0}}{\sqrt{2}} \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right) + \frac{(-1)^{a_1}}{\sqrt{2}} \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)$$
$$\left(\frac{(-1)^{a_0} + (-1)^{a_1}}{2} \right) |0\rangle + \left(\frac{(-1)^{a_0} - (-1)^{a_1}}{2} \right) |1\rangle$$

- $a_0 = a_1 \implies$ Output $\pm |0\rangle$. Measure, always gets $|0\rangle$
- $a_0 \neq a_1 \implies$ Output $\pm |1\rangle$. Measure, always gets $|1\rangle$

Take away: Parity of 2 bits can be computed with 1 oracle query.

- Argument generalizes. Parity of n bits can be computed in $n/2$ queries.
- Want to be always correct? Then, $n/2$ queries necessary !

Deutsch's Problem

Statement

- Consider a function $f: \{0, 1\} \rightarrow \{0, 1\}$.
- Four possible Truth tables: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- Either constant or balanced.

Deutsch's Problem

Let $f: \{0, 1\} \rightarrow \{0, 1\}$. Is $f(0) = f(1)$?

- Classically: two queries are sufficient and necessary (**Why ?**).
- Can we do with only one query ? Classically: correct only half of time.
- Solution: Suffices to compute $f(0) \oplus f(1)$!
- Doable in 1 quantum query to U_f^\pm (**Warm up**).

Deutsch's problem

A Solution

Final state value:

$$\left(\frac{(-1)^{f(0)} + (-1)^{f(1)}}{2} \right) |0\rangle + \left(\frac{(-1)^{f(0)} - (-1)^{f(1)}}{2} \right) |1\rangle$$

- $f(0) = f(1) \implies$ Output $\pm |0\rangle$. Measure, always gets $|0\rangle$
- $f(0) \neq f(1) \implies$ Output $\pm |1\rangle$. Measure, always gets $|1\rangle$

Deutsch-Josza problem

Statement

Deutsch-Josza problem

Given a function $f: \{0, 1\}^n \rightarrow \{0, 1\}$ with the **promise** that either

- 1 f is constant, or
- 2 f is always balanced (half zeros, half ones).

Example: $n = 3$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

– "Constant"

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

– "Balanced"

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

– **Output ?**

Deutsch-Josza problem

Classical and Quantum solutions

- Generalization of Deutsch's problem.
- Classical solution ($n = 3$): Do all 8 lookups. Can we do better ?
- 5 lookups suffices. Can we do in 4 ?

Take away: There is a deterministic solution making $2^{n-1} + 1$ queries. (**Why ?**)

Also, this is necessary (**Why ?**)

Surprise !

Deutsch-Josza problem can be solved with only **one** quantum query.

Deutsch-Josza problem

A one query quantum algorithm

Algorithm:

Walsh-Hadamard Transform

- $H^{\otimes n} |0^n\rangle$ produces a state where all n bit strings are in equal superposition.
- $H |0\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$
- $H \otimes H |00\rangle = H |0\rangle \otimes H |0\rangle = \frac{1}{\sqrt{4}} (|00\rangle + |01\rangle + |10\rangle + |11\rangle)$
- $\overbrace{H \otimes \dots \otimes H}^n |0 \dots 0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle.$

Deutsch-Josza problem

Sketch of how and why it works

Why it works ?

- Suppose $|\psi\rangle$ is final state before measurement
- f constant $\rightarrow \pm|0\dots0\rangle$ in $|\psi\rangle$. Will *always* give $|0\dots0\rangle$ on measure.
- f is balanced $\rightarrow 0|0\dots0\rangle$ in $|\psi\rangle$. Will *never* give $|0\dots0\rangle$.
- Doable in 1 quantum query to U_f^\pm . Makes no mistakes !

How it works ? Understand what is $|\psi\rangle$!

$$|\psi\rangle = H^{\otimes n} \left(\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle \right)$$

- ① **HW:** For $x \in \{0,1\}^n$, Show that $H^{\otimes n} |x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle$
- ② Use this to understand $|\psi\rangle$ and amplitude of $|0\dots0\rangle$.

Summary