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Syllabus

Mathematical preliminaries
Complex Euclidean spaces
Relevant matrix operations (decompositions, Kronecker product, etc.)
Positive semidefinite matrices and their properties
Basics of linear and semidefinite programming

Basics of quantum information
Representations of quantum states (pure and mixed)
Superposition and Entanglement
Quantum operations (unitaries, POVMs, general measurements, partial
trace, etc.)
Quantum state discrimination



Plan for this talk

Classical probability in quantum notation: states, events, evolution

Quantum registers and their states

Gates and the evolution of quantum states

Quantum measurements

Telling classical and quantum states apart



Classical probability in quantum notation: states

The state of a random bit is a probability distribution over {0,1}, given

by a probabilty vector ∣π⟫ = [p0
p1

].

We write ∣0⟫ for [1
0] and ∣1⟫ for [0

1]. So ∣π⟫ = p0 ∣0⟫+p1 ∣1⟫.

When describing the probabilistic state of n registers, we have a
probability vector with 2n components:

∣π⟫ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p0...00
p0...01
⋮

p1...11

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= ∑
x∈{0,1}n

px ∣x⟫.



Classical probability in quantum notation: evolution

In each step of a randomized
computer with n registers, a new
state is obtained from the old
state.
The change in state is described
by a 2n×2n stochastic matrix:
the columns add up to 1.

The Toffoli gate acts on three bits:

∣x ,y ,z⟫↦ ∣x ,y ,z⊕xy⟫.

The Toffoli gate corresponds to
the 8×8 permuation matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2×2
I2×2

I2×2
0 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The dollar gate corresponds to

the matrix [0.5 0.5
0.5 0.5].



Classical probability in quantum notation: events

Events are subsets of basis
states. They are represented
by the their characteristic
vector.
The probability of the event
⟪E∣ when the registers are in
state ∣π⟫ is ⟪E∣π⟫.
The matrix (pi ∣j ∶ i , j ∈ [N]) can
be written as ∑i ,j pi ∣j ∣i⟫⟪j ∣,
that is

∣j⟫↦∑
i

pi ∣j ∣i⟫.

For example, ⟪EQ∣ = [1 0 0 1]
corresponds to to the observation
that the two registers have identical
values.
Similarly, the event
⟪OR∣ = [0 1 1 1] corresponds to
the observation that at least one of
the registers contains a 1.
What is the probability of the event

⟪EQ∣ when the state is ∣π⟫ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.4
0.1
0.2
0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

?
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Quantum probability

Internet: C. Orzel/Union College

The Mach-Zender apparatus

When the top beam is blocked,
either detector may receive the
photon.
When the bottom beam is
blocked, either detector may
receive the photon.
When both beams are allowed,
only one detector receives the
photon.



Classical versus quantum probability

The state of a random bit

[p0
p1

] ; p0+p1 = 1.

When n bits are involved, the
state is a probability vector with
2n components.
Operations correspond to
stochastic matrix.

The state of a qubit

(α

β
) ; ∣α ∣2+ ∣β ∣2 = 1.

∣0⟩ ≡ (1
0) and ∣1⟩ ≡ (0

1) Negative

numbers are allowed!
When n qubits are involved, the
state is a unit vector with 2n

amplitudes.
Operations correspond to unitary
matrices.



Where do the states live?

∣0⟫

∣1⟫

∣0⟫

∣1⟫
∣x⟫

∣0⟩

∣1⟩
∣ψ⟩

Deterministic register

∣0⟫, ∣1⟫

Randomized register

p∣0⟫+q∣1⟫; p+q = 1.

Quantum register

α ∣0⟩+β ∣1⟩ ; ∣α ∣2+ ∣β ∣2 = 1



Quantum circuits: The Hadamard gate

Internet: Daniel Ciocı̂rlan

We allow 2×2 and 4×4 unitary
operations that act on two
registers at a time.
An important operation is the
Hadamard operation H.
It is like a coin toss, but it
remembers its input; H is its own
inverse. Much can be done with
it.



Quantum circuits: The CNOT gate

https://commons.wikimedia.org/wiki/File:CNOT_gate.svg

∣x ,y⟩ ↦ ∣x ,x ⊕y⟩
⎡⎢⎢⎢⎢⎢⎣

I2×2
0 1
1 0

⎤⎥⎥⎥⎥⎥⎦
The first register remains the
same; the second register flips if
the first contains a 1.

What happens if the input is
1
√

2
(∣0⟩+ ∣1⟩) ∣0⟩?

What happens if the input is
1
√

2
∣0⟩(∣0⟩+ ∣1⟩)?

What happens if the input is
1
2(∣0⟩+ ∣1⟩)(∣0⟩− ∣1⟩)?

1√
2
(∣00⟩+ ∣11⟩)

1√
2
∣0⟩(∣0⟩+ ∣1⟩)

1
2(∣0⟩− ∣1⟩)(∣0⟩− ∣1⟩)

https://commons.wikimedia.org/wiki/File:CNOT_gate.svg
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Quantum probability: measurements

When the registers are measured, the state collapses to one of the
basis states.
If the registers were originally in the state ∣ψ⟩ = ∑x αx ∣x⟩, then the
probability that the state ∣x⟩ results is ∣αx ∣2.
If a register is measured, then the state of that register collapses to
either ∣0⟩ or ∣1⟩; the state of the remaining registers also collapses
consistently.
Suppose two registers are in state
∣ψ⟩ = α00 ∣00⟩+α01 ∣01⟩+α10 ∣10⟩+α11 ∣11⟩.
If the first register is measured, then the probability of observing 0 is
p0 = ∣α00∣2+ ∣α01∣2. If zero is observed, the state of the second register
becomes 1

√
p0

(α01 ∣01⟩+α10 ∣10⟩).



Mixed states

An ensemble of states

Suppose we prepare a state in a
register A by performing a
classical probabilistic
experiment:

( p1 p2 p3 ⋯ pt
∣ψ1⟩ ∣ψ2⟩ ∣ψ3⟩ ⋯ ∣ψt⟩

) .

What is the state of the register
A?
Can different ensembles lead to
the same state?

The state of a subsystem

Suppose two registers A and B
are in a joint state

∣ψ⟩AB =
t
∑
i=1

αi ∣ai⟩A ∣bi⟩B .

Does it then makes sense to talk
about the state of the register A?
Is the state of register A an
ensemble?
What if we measure B? Does the
basis of measurement matter?



The density matrix

( 1 2 3 ⋯ t
∣ψ1⟩ ∣ψ2⟩ ∣ψ3⟩ ⋯ ∣ψt⟩

) .

Question: Suppose we perform an orthogonal measurement in a basis
{∣mj⟩ ∶ j = 1,2, . . . ,d} What is the probability of the j-th outcome?
Answer:

d
∑
i=1

pi ⟨mj ∣ ∣ψi⟩⟨psii ∣ ∣mj⟩ = ⟨mj ∣(
d
∑
i=1

pi ∣ψi⟩⟨ψj ∣) ∣mi⟩ = ⟨mj ∣ρ ∣mj⟩ .

The same ρ irrespective of j .
All the information about the ensemble has been compiled in ρ; it is
the density matrix of the state of the ensemble.



The density matrix

The density matrix is positive semidefinite.

It can be written as

ρ =
d
∑
i=1

λi ∣φi⟩⟨φi ∣ ,

where λi ≥ 0 and ∑i λi = 1.

The density matrix is positive semidefinite, and has trace 1.

Suppose the density matrix ρAB describes the joint state of a pair of
registers (A,B); to obtain the state ρA of the register A, we perform a
partial trace

ρA = TrBρAB.



State discrimination

Suppose there are two registers X and Y ; X is quantum, but Y is
classical (random) bit.

Alice first prepares Y such that Pr[Y = 0] = λ and Pr[Y = 1] = 1−λ .
Then, she prepares X in state ρ0 if Y = 0 and in state ρ1 if Y = 1.

Alice sends X to Bob, and asks him to guess Y .

What is the best strategy for Bob?



The optimal strategy

Consider the classical analog with P0 and P1 instead of ρ0 and ρ1. In
the optimal strategy,

Pr[error] = 1
2
+ 1

2
∥λP0−(1−λ)P1∥1.

The quantum bound is similar (Holevo-Helstrom theorem). In the best
quantum strategy,

Pr[error] = 1
2
+ 1

2
∥λρ0−(1−λ)ρ1∥1 =

1
2
+∥λρ0−(1−λ)ρ1∥Tr.



Thank you.


