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-

Specified by a basis 131, 132, -, b, € R"™, linearly
Independent vectors.

L= {21131+z2132+--- +2h |Vi€[nl,z € Z}

Lattice: set of vectors formed by integer linear combinations.

n : rank of the lattice
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Lattlces Basis is not unique

Hard to find short basis

L={zb+zby+ +z,b,|Vi€nl,z;€ Z}  Rank N
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y-Shortest Vector Problem (SVP): (y > 1)
Input: basis B of lattice L and number d > 0

Goal: distinguish between

A,(L): Length of shortest non-zero lattice vector.

Approximate the length of shortest non-zero lattice vector.

For small y, decision problem is as hard as search problem.
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y-Closest Vector Problem (SVP): (y > 1)
Input: basis B of lattice L, target f and number d > 0

Goal: distinguish between

e YES:dist(f,L) <d
e NO:dist(t,L) > yd

dist(f, L): minimum distance of 1 from any lattice vector in L.

Approximate the distance of target vector from lattice.

y-CVP is at least as hard as y-SVP.
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y-CVP is NP-hard for y < n'/loglogn,

[ Arora-Babai-Stern-Sweedyk-93, Dinur-Kindler-Raz-Safra-03, Dinur—03]

v-SVP is NP-hard for constant y.

[ Ajtai-98, Micciancio-98, Khot-05, Haviv-Regev-07 ]

y-SVP is poly-time hard under some reasonable conjecture

for y < nl/loglogn_

[ Dinur-03, Khot-05, Haviv-Regev-07, Micciancio-12, Bennett-Peikert-23 ]
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[Ajtai-Kumar-Sivakumar-01, Aggarwal-Dadush-Regev-StephensDavidowitz-15, Aggarwal-Dadush-
StephensDavidowitz-15,..... ]

20831 _time and 2" space quantum algorithm for exact SVP.
[Aggarwal-Chen-Kumar-Shen-22 ]

0 Open Problem: Quantum advantage for CVP.

k"'*_approximate SVP reduces to exact SVP on dimension k.

[ Schnorr-87, Gama-Nguyen-08, Hanrot-Pujol-Stehlé-11, Micciancio-Walter-16, ...... ]

Conjecture: poly(n)-SVP is exp(£2(n))-hard.
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! Use ETH/SETH/QSETH and fine-grained reductions from k-SAT.

ETH (Exponential Time Hypothesis):
3-SAT on n-variables requires exp(£2(n))-time.

SETH (Strong Exponential Time Hypothesis):
For every ¢ > (0, dk such that k-SAT on n-variables requires

U= _time.

QSETH (Quantum Strong Exponential Time Hypothesis):
For every ¢ > 0, dk such that quantum algorithms for k-SAT on
n-variables requires 2! ="/ _time.

12
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ETH (Exponential Time Hypothesis):
3-SAT on n-variables requires exp(£2(n))-time.

3-SAT on n-variables S CVP on
and m clauses n + m rank lattice

ETH and sparsification lemma = CVP on 7 rank lattice is exp(£2(n))-hard.

[ Bennett-Golovnev-StephensDavidowitz 17 ]

& Open Problem: exp(£2(n))-hardness of SVP.

13



exp(n)-hardness



exp(n)-hardness

exp(£2(n))-time hardness for SVP/CVP is not enough for practical security.

14



exp(n)-hardness

exp(£2(n))-time hardness for SVP/CVP is not enough for practical security.

A Practical applications choose n ~ 500 for efficiency.

14



exp(n)-hardness

exp(£2(n))-time hardness for SVP/CVP is not enough for practical security.

A Practical applications choose n ~ 500 for efficiency.

A 2720 time algorithm for SVP/CVP either breaks these cryptosystems or
make them inefficient.

14



exp(n)-hardness

exp(£2(n))-time hardness for SVP/CVP is not enough for practical security.

A Practical applications choose n ~ 500 for efficiency.

A 2720 time algorithm for SVP/CVP either breaks these cryptosystems or
make them inefficient.

2Cn

Can we get 2~"-hardness for C'VP for some specific constant C > 0 ?




exp(n)-hardness

exp(£2(n))-time hardness for SVP/CVP is not enough for practical security.

A Practical applications choose n ~ 500 for efficiency.

A 2720 time algorithm for SVP/CVP either breaks these cryptosystems or
make them inefficient.

2Cn

Can we get 2~"-hardness for C'VP for some specific constant C > 0 ?

It is impossible to get 2¢"-hardness for CVP under SETH/QSETH via

poly-time Turing reductions from k-SAT unless the polynomial hierarchy collapses
to the third level.

[Aggarwal-Kumar 23]
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A compressed instance may not be of the same problem.
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the polynomial hierarchy collapses to the third level. [Dell-vanMelkebeek14]
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Instance Compression

Any CVP instance can be compressed to O(n°) bits.

Closest lattice vector
is {0,1}-combinations of
basis vectors

CVP on n-rank _— (0,1)-CVP on

lattice n3-rank lattice

Frank-Tardos-87

CVP,p on n° integers CVP,pon n’
—
from [0,2”5] number
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for all constant &

k-SAT on n CVP on
variables (Cn-rank lattice
s CVP/SVP
really that hard?
Weighted-Max-2-SAT [ Bennett-Golovnev-StephensDavidowitz 17 ] R (0,1)-CVP on
on n-variables n-rank lattice

[ Abboud-Kumar-25 ]

5k Open problem: Rank-preserving reduction from CVP to (0,1)-CVP
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Security of lattice-based crypto is equivalent to hardness of average-case
lattice problems: Learning with Errors (LWE) and Short Integer Solutions (S19).

[Micciancio- Regev 04]
n- SVP SIS

Quantum reduction

[Regev-05]
——————— LWE

[Peikert-09,
Brakerski-Langlois-Peikert-Regev-Stehlé-13]
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Can we improve the success prob. for reduction from lattice problems to
Dihedral hidden subgroup problem?

Faster quantum algorithms for SVP/CVP.

Quantum advantage for reduction from approx-SVP/CVP to exact-
SVP/CVP on smaller dimension.

Quantum fine-grained hardness of approx-SVP/CVP.

Thank you!
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